COME MISURARE LA QUALITÁ DEL CIBO: IL RUOLO DELLA RISONANZA MAGNETICA

DANIELE DEGL'INNOCENTI

LE -OMICHE E DINTORNI

GENETICA GENOMICA PROTEOMICA TRASCRITTOMICA EPIGENETICA METILOMICA NUTRIGENOMICA NUTRACEUTICA METAGENOMICA METABOLOMICA METABONOMICA

LA METABOLOMICA

La metabolomica è lo studio sistematico delle impronte chimiche uniche lasciate da specifici processi cellulari - nello specifico, lo studio dei loro profili metabolici a molecole piccole.

LA METABOLOMICA

La metabolomica fornisce informazioni che permettono di controllare l'origine degli alimenti e studiarne la qualità e gli effetti sul metabolismo di chi li assume

SPETTROSCOPIA E CHEMIOMETRIA

Il loro utilizzo combinato mediante analisi rapide e non "invasive" permette di

individuare le "impronte digitali" o "marker" di un alimento di alimenti provenienti da un'area geografica di alimenti ottenuti mediante lo stesso procedimento

e di riconoscerle nonostante le variazioni annuali o stagionali

e, in futuro, di risalire a frodi e sofisticazioni in tutti gli alimenti

Risonanza magnetica - NMR

NMR STATO LIQUIDO

¹H NMR Studies on Italian Balsamic and Traditional Balsamic Vinegars

ROBERTO CONSONNI*,† AND ALBERTO GATTI[‡]

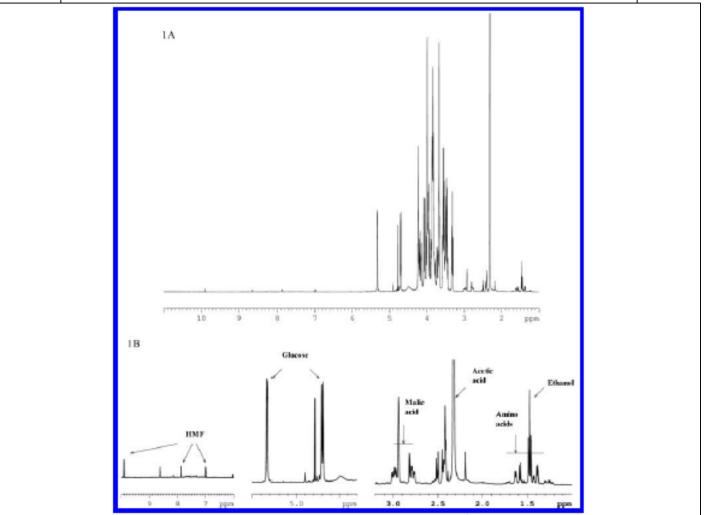
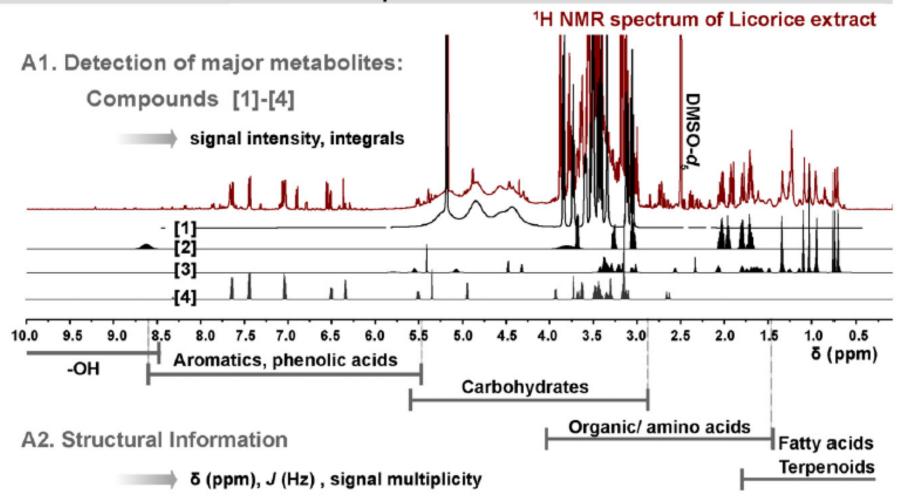



Figure 1. ¹H NMR spectra recorder with water suppression pulse program. (A) Typical spectrum of balsamic vinegar sample. (B) Expanded regions (aromatic, anomeric, and aliphatic regions, from left to right) with metabolite assignments.

A Observation of 1D ¹H NMR spectrum

High-Resolution NMR and Diffusion-Ordered Spectroscopy of Port Wine

Mathias Nilsson et al. - J. Agric. Food Chem. 2004

Figure 1. ¹H NMR spectra of (A) Port A (20 years old), (B) Port B (3 years old), and (C) Port C (1 year old), recorded with 128 transients. Some of the assigned resonances are indicated; signals marked "Un" remain unassigned.

DIFFERENZIAZIONE VINI SLOVENI CON SPETTRI NMR

Kosir et al. – Nationali Institute of Chemistry, Ljubliana, Slovenia (2000)

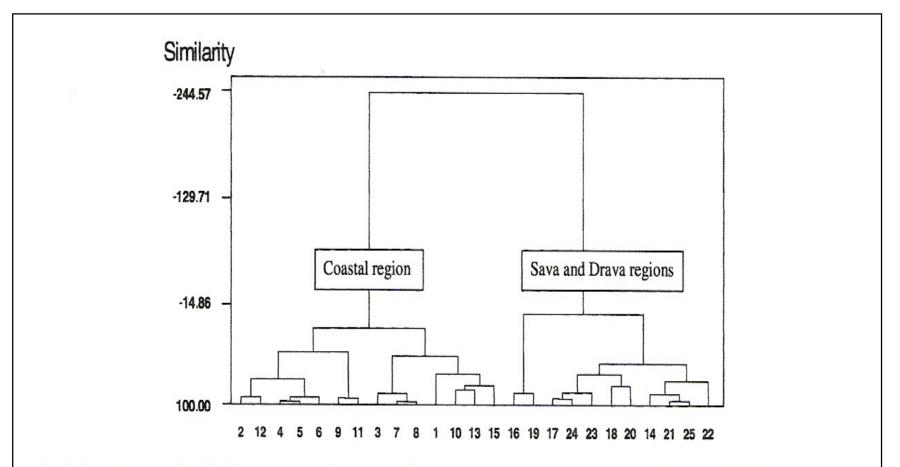
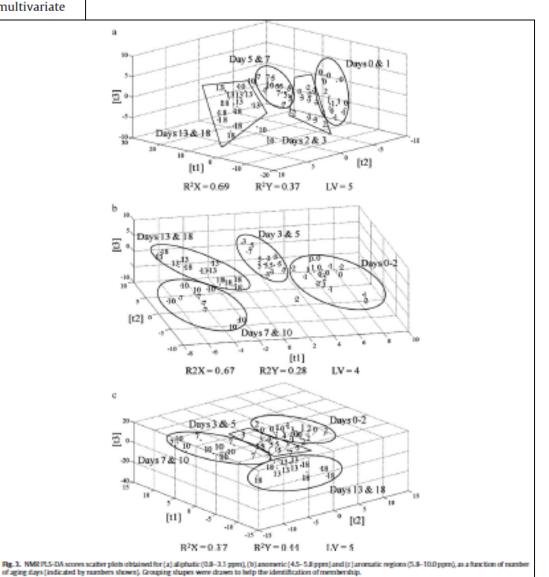


Fig. 9. Dendrogram of the 25 objects represented by three variables obtained by Ward's hierarchical clustering method. The numbers are the same sample identifiers as in Table 4.

Contents lists available at ScienceDirect

Analytica Chimica Acta

journal homepage: www.elsevier.com/locate/aca

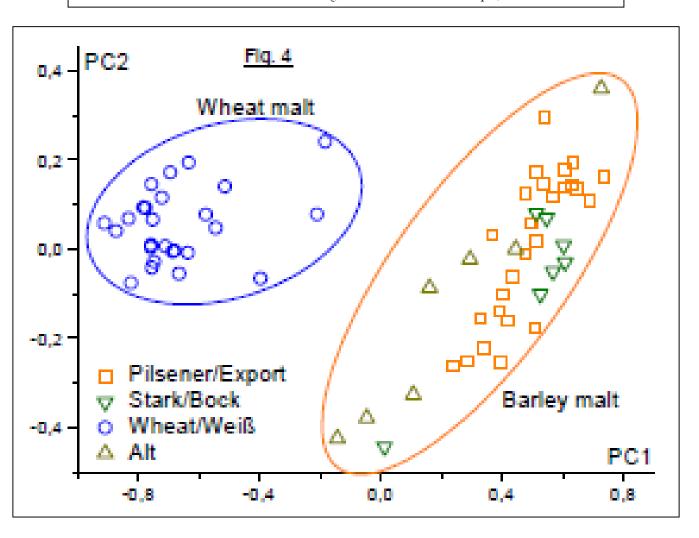


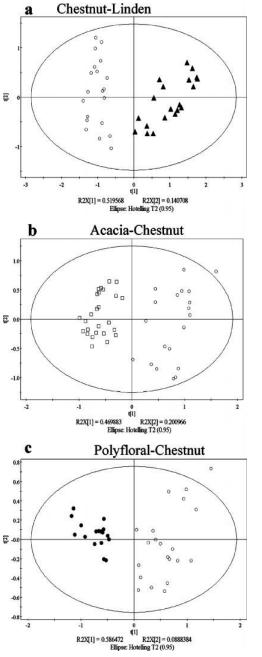
Probing beer aging chemistry by nuclear magnetic resonance and multivariate analysis

J.A. Rodrigues a, A.S. Barros b, B. Carvalho c, T. Brandão c, Ana M. Gil a,*

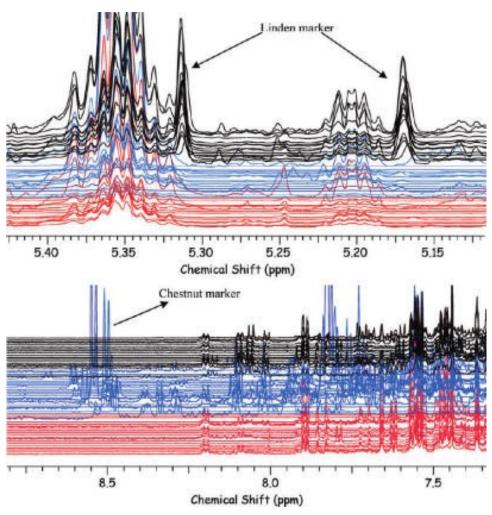
CICECO-Department of Chemistry, University of Aveiro, Campus de Santiago, 381 0-193 Aveiro, Portugal

b QOPNA-Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
CUNCER, Bebidas de Portugal, Leça do Balio, 4466-955, S. Mamede de Infesta, Portugal


Quality Control of Beer using High-Resolution Nuclear Magnetic Resonance



Spectroscopy and Multivariate Analysis


D.W. Lachenmeier¹, W. Frank¹, E. Humpfer², M. Spraul²

¹Chemisches und Veterinäruntersuchungsamt Karlsruhe ²Bruker BioSpin, Rheinstetten

MIELE E NMR Discriminazione dell'origine

NMR E MIELE Classificazione mieli italiani

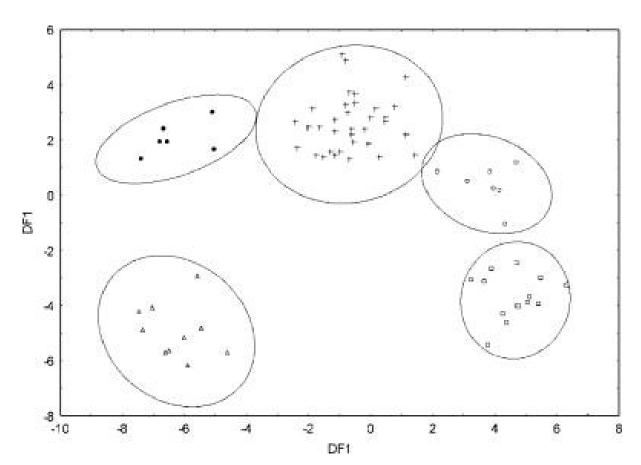


Figure 7. Score plot of the first two canonical functions for the data

set obtained by DMSO-d6
1H-13C HMBC spectrum
showing separation
of honeys in five different
clusters: polyfloral honeys (+),
eucalyptus
honeys (b), chestnut honeys (4),
citrus species honeys (O), and
robinia honeys (0).

LWT - Food Science and Technology

journal homepage: www.elsevier.com/locate/lwt

Identification of components of Brazilian honey by ¹H NMR and classification of its botanical origin by chemometric methods

Elisangela F. Boffo a,*, Leila A. Tavares b, Antonio C.T. Tobias c, Márcia M.C. Ferreira d, Antonio G. Ferreira a

ARSTRACT

The potential of NMR spectroscopy to differentiate honeys concerning to the nectar employed in its production was evaluated. The application of chemometric methods to ¹H NMR spectra has allowed to discriminate the honeys produced in the state of São Paulo, being identified the signals of responsible substances for the discrimination. Application of PCA and HCA methods to ¹H NMR data have resulted in the natural clustering of the samples. Wildflower honeys were characterized by higher concentration of phenylalanine and tyrosine. Citrus honeys showed higher amounts of sucrose than other compounds, while eucalyptus honeys had higher amount of lactic acid than the others. Assa-peixe honeys showed spectra similar to eucalyptus and citrus. Sugar-cane honeys showed some signals similar to eucalyptus and citrus honeys, but also showed the tyrosine and phenylalanine signals. Adulterated honeys showed 5-hydroxymethylfurfural, citric acid and ethanol signals. KNN, SIMCA and PLS-DA methods were used to build predictive models for honey classification. In the commercial honeys prediction KNN, SIMCA and PLS-DA models correctly classified 66.7; 22.2 and 72.2% of the samples, respectively.

© 2012 Elsevier Ltd. Open access under the Elsevier OA license.

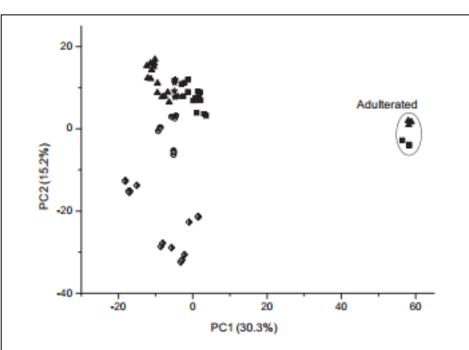


Fig. 2. PCA scores plot (PC1 × PC2) of all honey types analyzed by ¹H NMR (45.5% of the total variance): ♦ – wildflower; ▲ – eucalyptus; ■ – citrus; ⊕ – sugarcane; ★ – assa-peixe honeys.

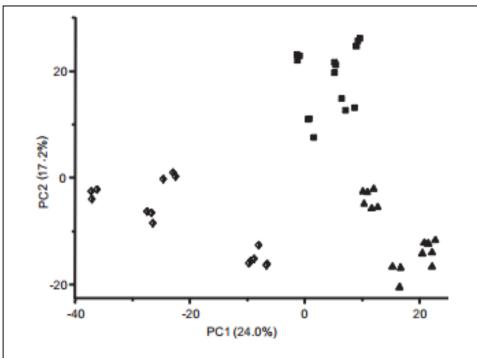


Fig. 4. PCA scores plot (PC1 x PC2) showing the discrimination between honey samples (41.2% of the total variance): → – Wildflower; ▲ – eucalyptus and ■ – citrus honeys.

Study of the Cultivar-Composition Relationship in Sicilian Olive Oils by GC, NMR, and Statistical Methods

Luisa Mannina,*,†,# Giacomo Dugo,‡ Francesco Salvo,‡ Lucia Cicero,‡ Giuliana Ansanelli,§ Cristina Calcagni,# and Annalaura Segre#

Dipartimento S.T.A.T., Facoltà di Scienze MM.FF.NN., Università del Molise, Via Mazzini 8, 86170 Isernia, Italy; Dipartimento di Chimica Organica e Biologica, Facoltà di Scienze MM.FF.NN., Università di Messina, Salita Sperone 31, 98166 Messina, Italy; C.R. ENEA-Trisaia, S.S. 106 Jonica, Km 419+500, 75025 Rotondella (MT), Italy; and Istituto di Metodologie Chimiche, CNR, 00016 Monterotondo Stazione, Roma, Italy

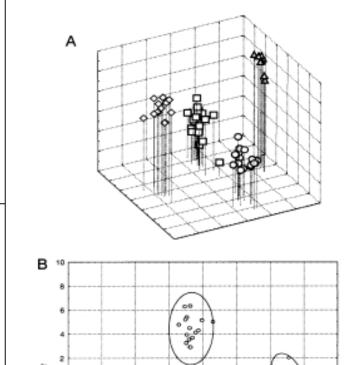


Figure 3. LDA of 60 Sicilian extra virgin olive oils based on 46 ¹³C peaks. (A) Three-dimensional plot obtained with the canonical scores for the three discriminant equations (roots 1, 2, and 3). (B) Two-dimensional plot with the canonical scores for the two discriminant equations (roots 1 and 2). Ellipses represent the 95% confidence regions for each group. Samples labeled with the same symbol come from the same cultivar: ○, NO, Nocellara; □, BI, Biancolilla; ◇, CE, Cerasuola; △, TI, Tonda Iblea.

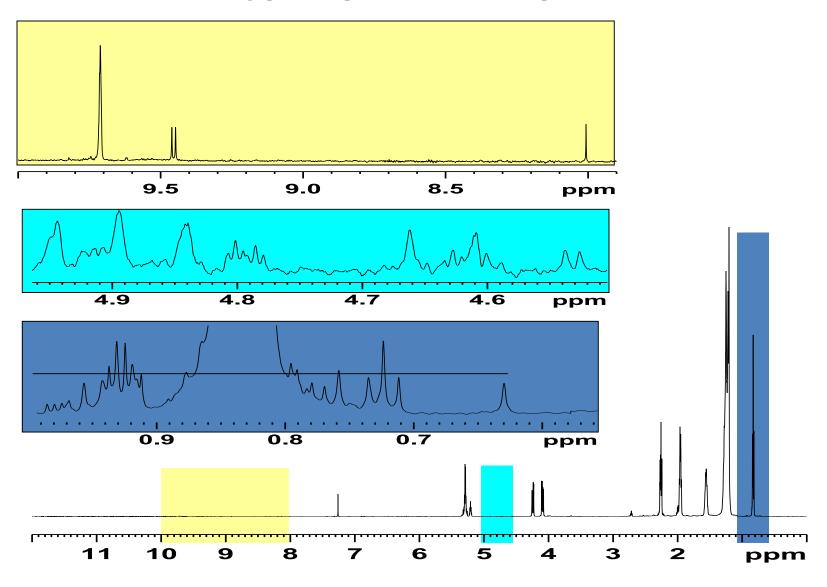
Root 1

Characterization of Italian Extra Virgin Olive Oils Using ¹H-NMR Spectroscopy

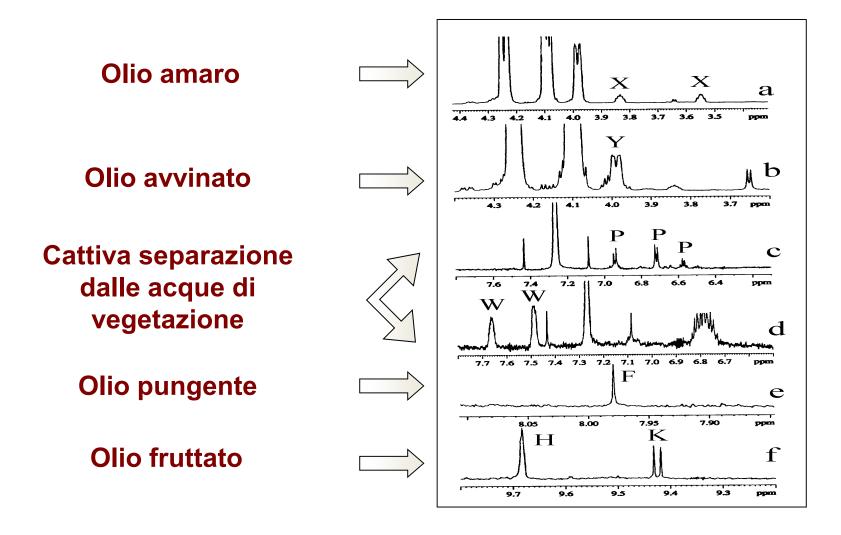
Raffaele Sacchi,*.[†] Luisa Mannina,[‡] Paolo Fiordiponti,[§] Piero Barone,[∥] Livio Paolillo,[⊥] Maurizio Patumi,[‡] and Annalaura Segre[§]

Dipartimento di Scienza degli Alimenti, Facoltà di Agraria, Università di Napoli Federico II, 80055 Portici, Napoli, Italy; Faculty of Math, Physical and Natural Sciences, and Environmental Sciences, University of Molise, 86170 Isernia, Italy; Istituto di Strutturistica Chimica and NMR Service, CNR, Area della Ricerca, M.B. 10, 00016 Monterotondo Stazione, Roma, Italy; Istituto Applicazioni Calcolo, CNR, 00181 Roma, Italy; Dipartimento di Chimica, Università di Napoli Federico II, Via Mezzocannone 4, 80134 Napoli, Italy; and Istituto di Ricerche sull'Olivicoltura, CNR, 06100 Perugia, Italy

High-field (600-MHz) proton nuclear magnetic resonance (1 H-NMR) spectroscopy was applied to the analysis of 55 extra virgin olive oil samples from four Italian regions (Campania, Lazio, Sicily, and Umbria) and obtained from diffrent olive varieties. The multivariate statistical analysis (PCA, hierarchical clustering) performed on the normalized intensities of 1 H- NMR resonances due to minor components (β -sitosterol, n-alkenals, trans-2-alkenals, and other volatile compounds) allows a good classification of oil samples obtained from traditional varieties with respect to the region of origin (96% of oils correctly classified). Samples obtained from one new experimental cultivar (FS-17) were not correctly classified, indicating a strong contribution of olive variety on the chemical composition of virgin olive oils. The potential contribution and limits of NMR in the authentication of virgin olive oil geographical origin and variety are discussed.

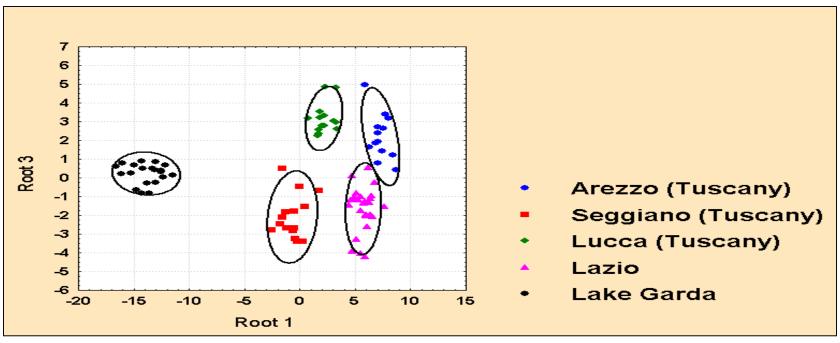

OLIO DI OLIVA: CARATTERIZZAZIONE ATTRAVERSO L'NMR AD ALTA RISOLUZIONE (¹H e ¹³C)

<u>Luisa Mannina</u>^{a,b}, Marco D'Imperio^a Anatoli Sobolev^b, Annalaura Segre^b

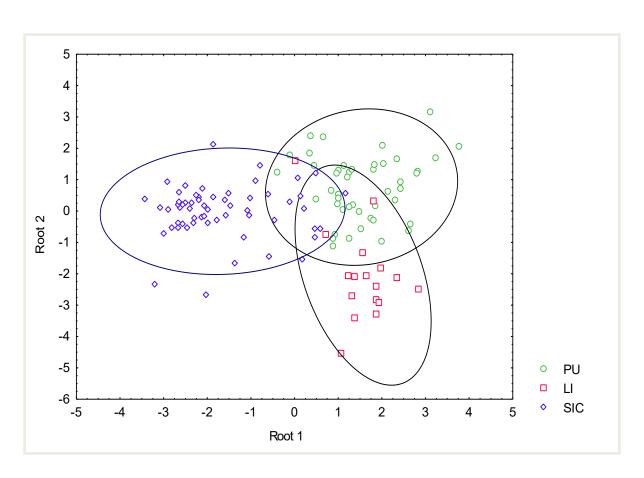

^a Università degli Studi del Molise, Isernia, Italy

b Istituto di Metodologie Chimiche, CNR, 00016 Monterotondo Stazione, Roma, Italy

SPETTRO PROTONICO DI UN OLIO DI OLIVA: COMPONENTI MINORI


ATTRIBUTI SENSORIALI

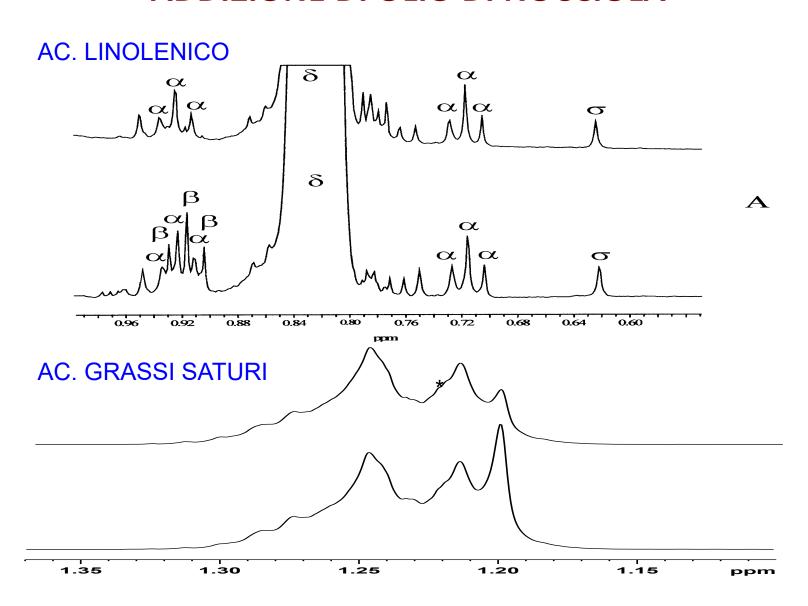
CARATTERIZZAZIONE GEOGRAFICA (¹H): OLI DEL CENTRO-NORD


LDA

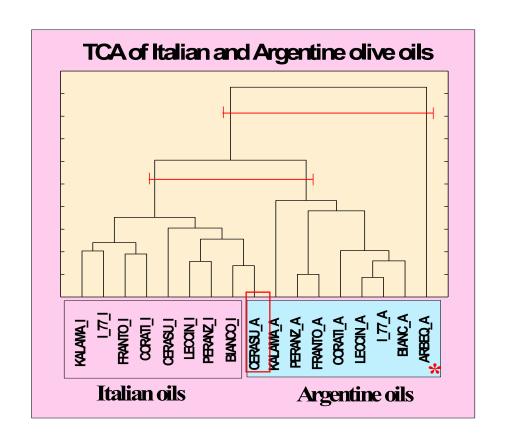
L.Mannina, M.Patumi, N.Proietti, D.Bassi, A.L.Segre, *Journal of Agriculture and Food Chemistry*, (2001), 49, 2687-2696

CARATTERIZZAZIONE GEOGRAFICA (¹H): EFFETTO DELL'ANNO

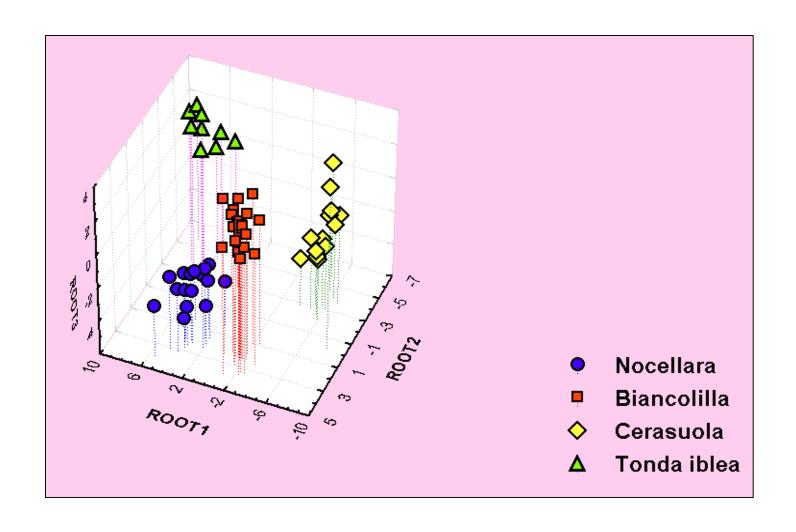
LDA



ANNO: 1996-1997;


OLI PUGLIESI, LIGURI E SICILIANI

ADULTERAZIONE DELL'OLIO DI OLIVA: ADDIZIONE DI OLIO DI NOCCIOLA



EFFETTO PEDOCLIMATICO (13C)

Argentina (Catamarca) Biancolilla (Sicilia) Cerasuola (Sicilia) Coratina (Puglia) Kalamata (Puglia) Peranzana (Puglia) Leccino (Lazio) I-77 (Umbria) Frantoio (Lazio) Arbequina

CARATTERIZZAZIONECC GENETICA (13C)

Classification of Edible Oils by Employing ³¹P and ¹H NMR Spectroscopy in Combination with Multivariate Statistical Analysis. A Proposal for the Detection of Seed Oil Adulteration in Virgin Olive Oils

GEORGIA VIGLI, ANGELOS PHILIPPIDIS, APOSTOLOS SPYROS, AND PHOTIS DAIS*

NMR Laboratory, Department of Chemistry, University of Crete, 714 09 Iraklion, Crete, Greece

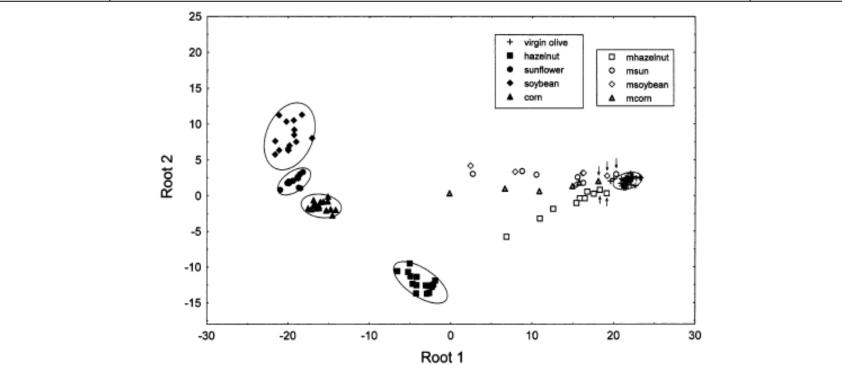
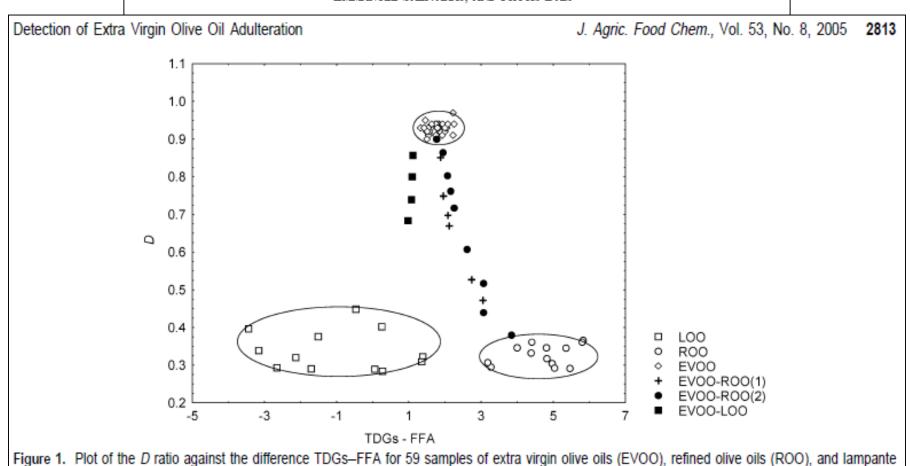
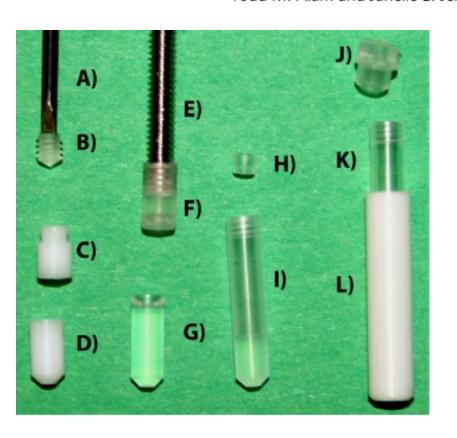



Figure 5. Plot of discriminant functions roots 1 and 2 for five types of edible oils. Virgin olive oil, hazelnut oil, corn oil, and sunflower oil are shown by crosses and solid symbols. Four sets of mixtures of 5, 10, 15, 20, 35, and 50% w/w of virgin olive oils with hazelnut (mhazelnut), sunflower (msun), soybean (msoybean), and corn (mcorn) oils and one set of mixtures of 5, 10, 15, and 20% of virgin olive oils with hazelnut oils (mhazelnut) are denoted by open symbols. Arrows indicate mixtures of 5% w/w of seed oils in virgin olive oils.

Detection of Extra Virgin Olive Oil Adulteration with Lampante Olive Oil and Refined Olive Oil Using Nuclear Magnetic Resonance Spectroscopy and Multivariate Statistical Analysis

GEORGIA FRAGAKI, APOSTOLOS SPYROS, GEORGE SIRAGAKIS, EMMANUEL SALIVARAS, AND PHOTIS DAIS*



olive oils (LOO) (open symbols) and for the EVOO mixtures with the lower quality olive oils (solid symbols). Ellipses were drawn as an aid to the eye.

NMR STATO SOLIDO (SEMISOLIDO)

HR-MAS NMR Spectroscopy in Material Science

Todd M. Alam and Janelle E. Jenkins

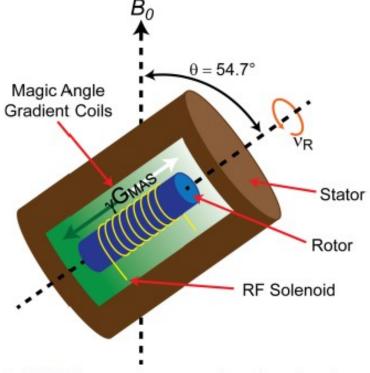
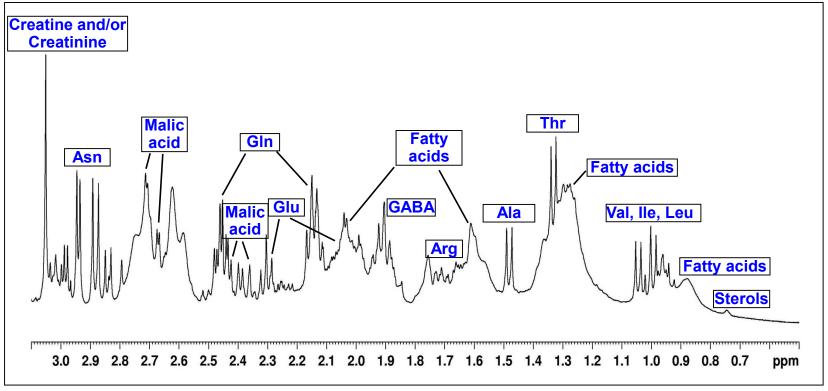
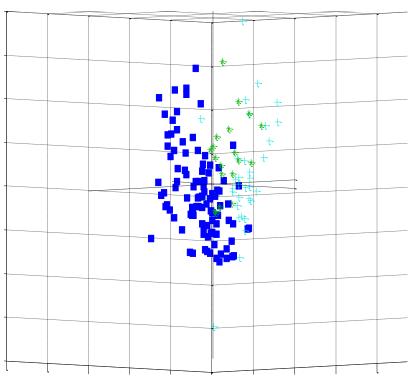



Figure 1. Schematic of a HR-MAS stator with a magic angle gradient along the rotor spinning axis.

CARATTERIZZAZIONE CON NMR:

Tracciabilità del peperone del Piemonte



Spettro ¹H HRMAS-NMR di peperone liofilizzato; regione spettrale 0.70-3.10 ppm.

CARATTERIZZAZIONE CON NMR:

Peperone: distinzione della zona di origine

Modelli PLSDA per discriminare l'origine geografica all'interno della cultivar Cuneo: Torino vs Cuneo vs Sicilia

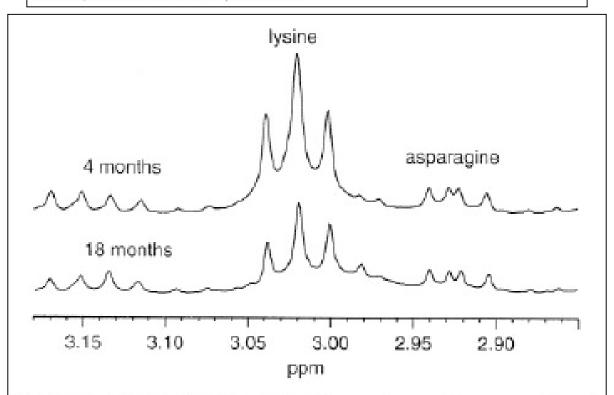
- **▲ Torino**
- Cuneo
- + Sicilia

Il modello riesce a predire:

- · l'85.7% della classe Torino;
- il 94.9% della classe Cuneo;
- il 100.0 %della classe Sicilia.

Proiezione dei campioni sulle prime tre variabili latenti.

Magu. Reson. Chem. (in press)


Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/mrc.1359

Is high-resolution magic angle spinning NMR a practical speciation tool for cheese samples? Parmigiano Reggiano as a case study

Laetitia Shintu,1 Fabio Ziarelli2 and Stefano Caldarelli1*

Received 6 August 2003; Revised 1 December 2003; Accepted 1 December 2003

Figure 5. A portion of the HRMAS spectrum of two samples of Parmigiano Reggiano cheese with different ages. Top, 4 months old; bottom, 18 months old.

¹ UMR 6516 Synthèse, Chiralité et Catalyse, Université d'Aix-Marseille III, 13397 Marseille Cedex 20, France

Centre Régional de RMN, Université d'Aix-Marseille I and III, 13397 Marseille Cedex 20, France

Exploring High-resolution Magic Angle Spinning (HR-MAS) NMR Spectroscopy for Metabonomic Analysis of Apples

Martina Vermathen*a, Mattia Marzoratia, and Peter Vermathenb

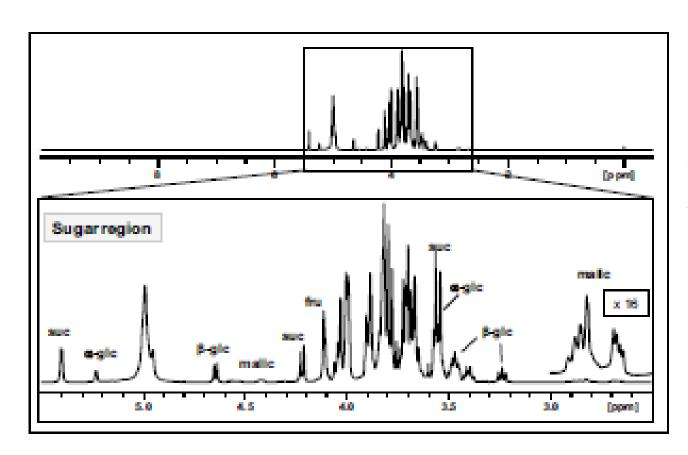


Fig. 2. ¹H HR-MAS NMR spectrum of apple tissue with an expansion of the sugar region (suc: sucrose, α-glc: α-glucose, β-glc: β-glucose, fru: fructose, malic: malic acid).

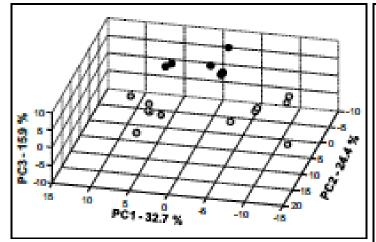


Fig. 7. 3D PCA scores plot PC1 vs PC2 vs PC3 for different apple cultivars. The PCA is based on 18 entries with each point representing the averaged spectrum obtained from 5 single spectra of one apple. Open circles: Golden Delicious, black: Rubens, grey: Braeburn.

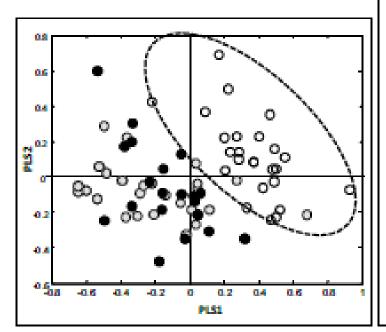


Fig. 8. Partial least squares discriminant analysis (PLS-DA) for applies Fig. 9. Load values for the first derived from different cultivation methods. Open circles: Bio, black: inte-the order of the ppm-scale. P1 grated production (IP), gray: low-input production (LI).P1

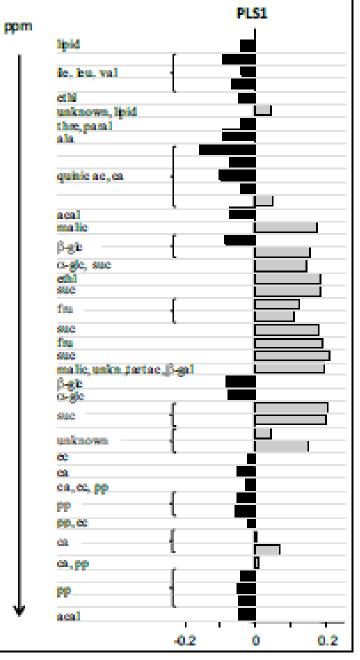


Fig. 9. Load values for the first PLS component and assigned buckets in the order of the ppm-scale.^[27]

Characterization of the Geographical and Varietal Origin of Wheat and Bread by Means of Nuclear Magnetic Resonance (NMR), Isotope Ratio Mass Spectrometry (IRMS) Methods and Chemometrics: A Review

Francesco Longobardi, Daniela Sacco, Grazia Casiello, Andrea Ventrella, Antonio Sacco*

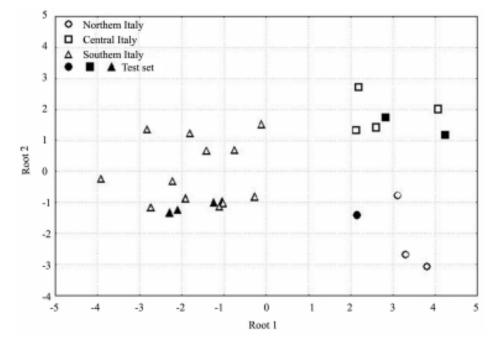


Figure 1. Plot of three geographical origins for wheat flours samples on the first two discriminant functions for spectroscopic data. Reprinted from Ref. [21]. Copyright (2002) with permission from AACC International.

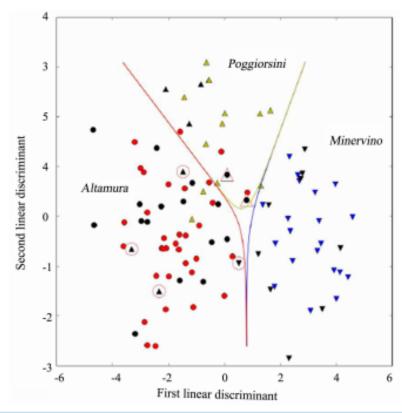



Figure 3. Linear discriminant analysis of a reduced number of Nuclear Magnetic Resonance (NMR) variables for the geographical origin classification. The red circle, blue down triangles and yellow up triangles represent, respectively, "Altamura", "Minervino" and "Poggiorsini" geographical classes in the training set. The same symbols in black represent the class assigned by the LDA model to the validation samples. Misassigned samples are surrounded by larger symbols representing the real geographical origin of the corresponding validation sample. Reprinted from Ref. [25]. Copyright (2010) with permission from John Wiley and Sons.

Contents lists available at ScienceDirect

Food Chemistry

journal homepage: www.elsevier.com/locate/foodchem

Analytical Methods

Study of the suitability of HRMAS NMR for metabolic profiling of tomatoes: Application to tissue differentiation and fruit ripening

Estela María Sánchez Pérez a, María José Iglesias a,*, Fernando López Ortiz a, Isidro Sánchez Pérez b, María Martínez Galera b

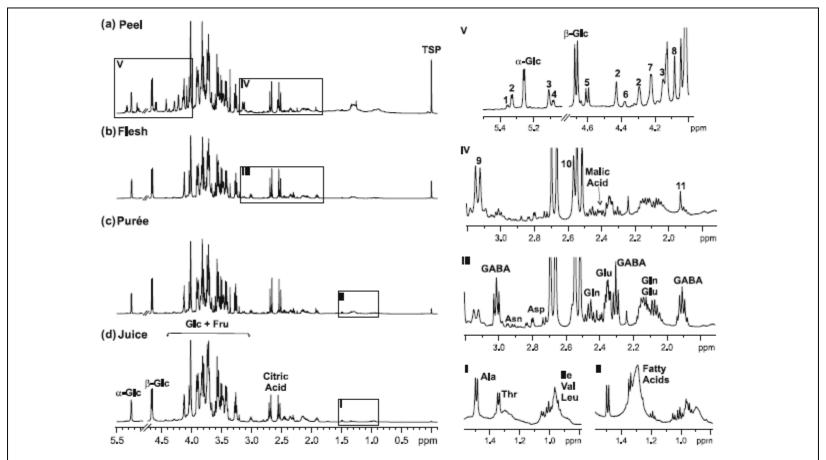


Fig. 2. ¹H HRMAS spectra of peel (a), flesh (b), purée (c) and ¹H NMR spectrum of juice (d) from mature red tomatoes. Resonances for selected metabolites are included (for labelling see Table 1).

Quantitative metabolic profiles of tomato flesh and seeds during fruit development: complementary analysis with ANN and PCA

Fabien Mounet,^a Martine Lemaire-Chamley,^a Mickaël Maucourt,^{a,b} Cécile Cabasson,^a Jean-Luc Giraudel,^c Catherine Deborde,^{a,b} René Lessire,^d Philippe Gallusci,^a Anne Bertrand,^a Monique Gaudillère,^a Christophe Rothan,^a Dominique Rolin,^a and Annick Moing^{a,*}

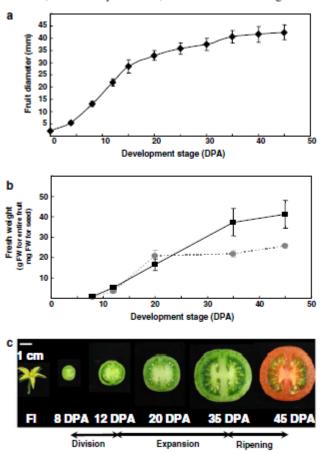


Figure 2. Growth and development of Aika Craig tomato fruits cultivated in a growth chamber. (a) Changes in fruit diameter. Mean of 12–36 fruits. Vertical bars represent standard deviations. (b) Changes in fruit fresh weight and seed fresh weight. Mean of 12–36 fruits. Vertical bars represent standard deviations. Black square, entire fruit; gray circle, seed. (c) Stages of fruit development from flower (FI) to mature fruit (45 DPA) separated in 3 phases of development characterized by cell division, cell expansion and fruit ripening.

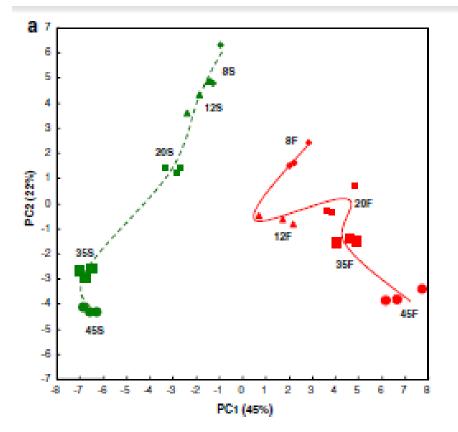
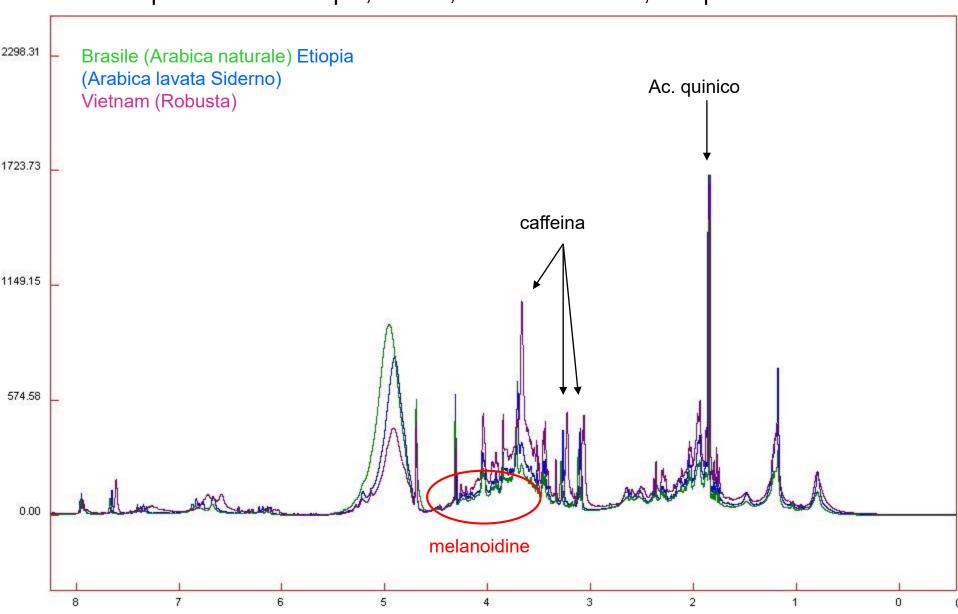
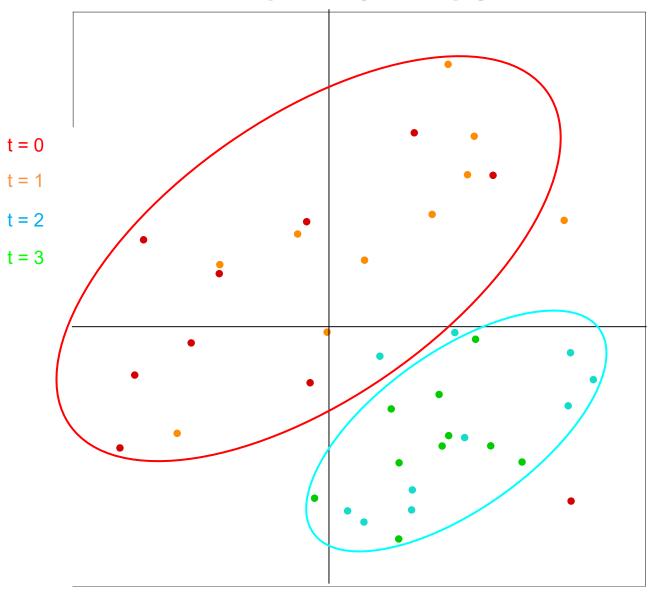




Figure 4. Principal component analysis (PCA) of absolute concentration of 44 metabolites issued from ¹H-NMR, GC-FID and LC-DAD analysis of tomato flesh (F) and seeds (S) at five stages of fruit development. (a) PCA scores plot. (b) PCA loadings plot. For each principal component, the 12 loadings with higher absolute value are indexed with the corresponding metabolite name. achloro, chlorogenic acid; behen, behenic acid; chloa, chlorophyll a; fruc, fructose; fum, fumaric acid; gaba, γ-aminobutyric acid; gln, glutamine; gluc, glucose; ileu, isoleucine; linoleic, linoleic acid; linolen, linolenic acid; ligno, lignoceric acid; lut, lutein; palm, palmitic acid; phe, phenylalanine; pyroglu, pyroglutamate; plant, planteose-like compound; stea, stearic acid; suc, sucrose; thre, threonin; tyr, tyrosine; xantho, xanthophyll.

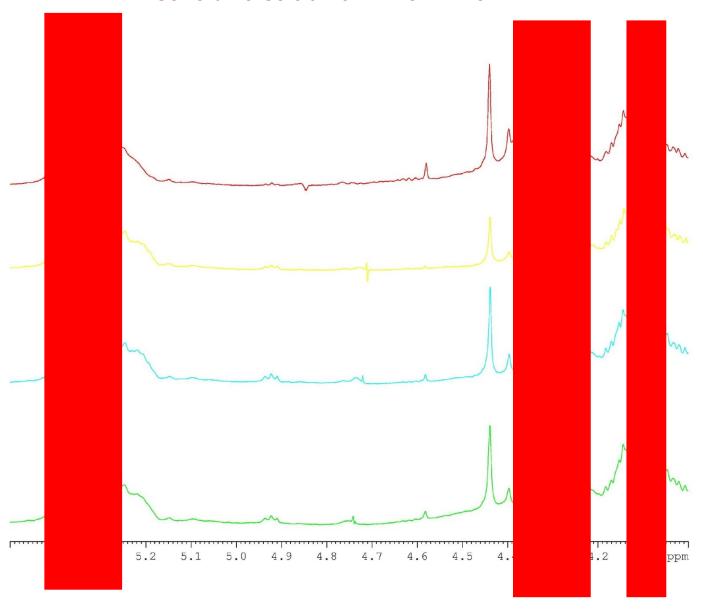

TECNICHE DI CONTROLLO DI QUALITÀ DEGLI ALIMENTI MEDIANTE NMR

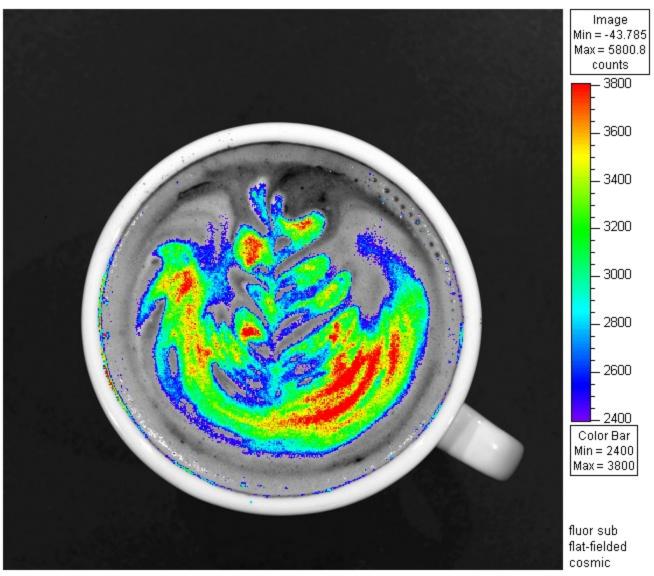
SPETTRI OTTENUTI CON NMR (Nuclear Magnetic Resonance). Ogni picco rappresenta una molecola o un suo tratto.



ZOOM SU UN TRATTO DI SPETTRO. MOLTI PICCHI POSSONO ESSERE RICONOSCIUTI (ASSEGNATI) A MOLECOLE NOTE

Spettri di caffè etiopia, brasile, vietnam: caffeina, ac. quinico




PC1 vs. PC3

I gruppi
individuati sono
due: il primo
costituito dagli
spettri T0 e T1,
il secondo da
quelli T2 e T3.

Le aree in rosso indicano alcune delle zone di spettro (metaboliti) utili per la discriminazione tra i gruppi: sono le molecole che sono diverse tra T0 + T1 e T2+T3



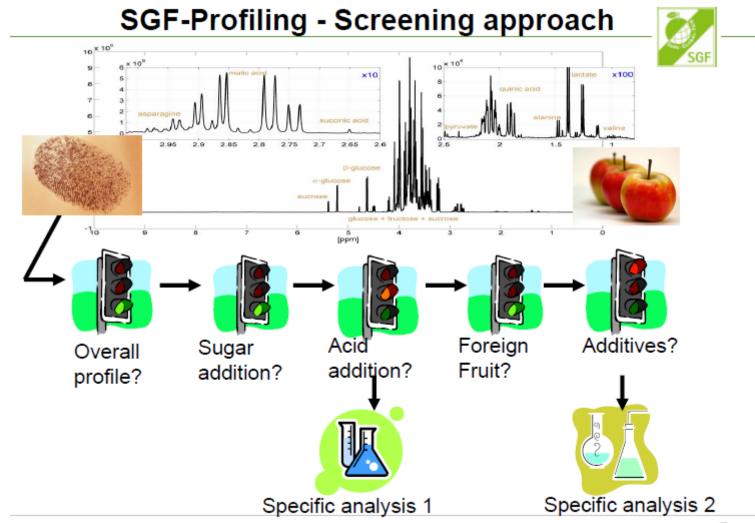
Click #FB20070920171514_001 Thu, Sep 20, 2007 17:16:06 Level=High, Em=GFP, Ex=GFP Bin:HR (4), FOV12.8, f4, 1s Camera: IVIS 23323, Spectral Instruments TE Series: cappuccino disegnato Experiment:

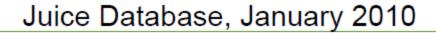
Label: Comment:

Analysis Comment:

Spettri di caffè 100% arabica, latte intero e relativo cappuccino: acido quinico

Sofia GmbH Rudower Chaussee 29 12489 Berlin GERMANY



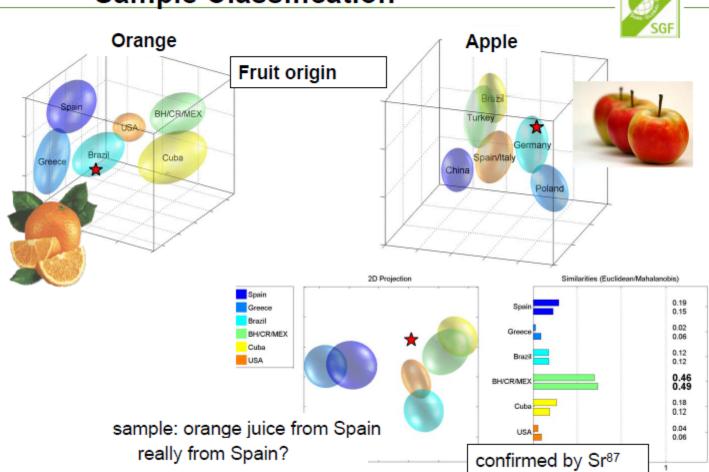

New Application Opportunities and further Development of SGF profiling Analyses

Dr. Susanne Koswig Technical Manager SGF/IRMA

www.sgf.org

Reference Juice Database (total 6560 samples)

Type of Fruit	Quantity
Apple	2591
Orange	1386
Pineapple	416
Sour Cherry	234
Lemon	225
Raspberry	187
Grapefruit, white	160
Peach	149
Black currant	128
Pear	109
Mango	101
Other	874 -
Total	6560

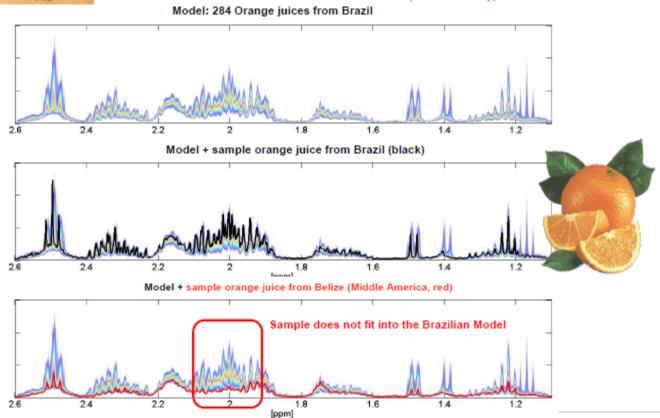

actual number of datasets: (April 2010)

7360 samples

apricot	101
grapefruit red	58
pomegranate	45
grape white/red	131
sweetie	11

database build up in the last years

Sample Classification



NMR Profile of Orange Juice

Expansion shows approx. 15% of the NMR Profile

NMR RICONOSCIMENTO DELL'ORIGINE CONVENZIONALE O BIOLOGICA

¹H NMR Profiling as an Approach To Differentiate Conventionally and Organically Grown Tomatoes

Monika Hohmann,*,†, Norbert Christoph,† Helmut Wachter,† and Ulrike Holzgrabe§

ABSTRACT: This study describes the approach of ¹H NMR profiling for the authentication of organically produced tomatoes (Solanum lycopersicum). Overall, 361 tomato samples of two different cultivars and four different producers were regularly analyzed during a 7 month period. The results of principal component analysis showed a significant trend for the separation between organically and conventionally produced tomatoes (p < 0.001 using the t test). Linear discriminant analysis demonstrated good discrimination between the growing regimens, and external validation showed 100% correctly classified tomato samples. Further validation studies, however, also disclosed unexpected differences between individual producers, which interfere with the aim of predicting the cultivation method, yet the results indicate significant differences between ¹H NMR spectra of organically and conventionally grown tomatoes.

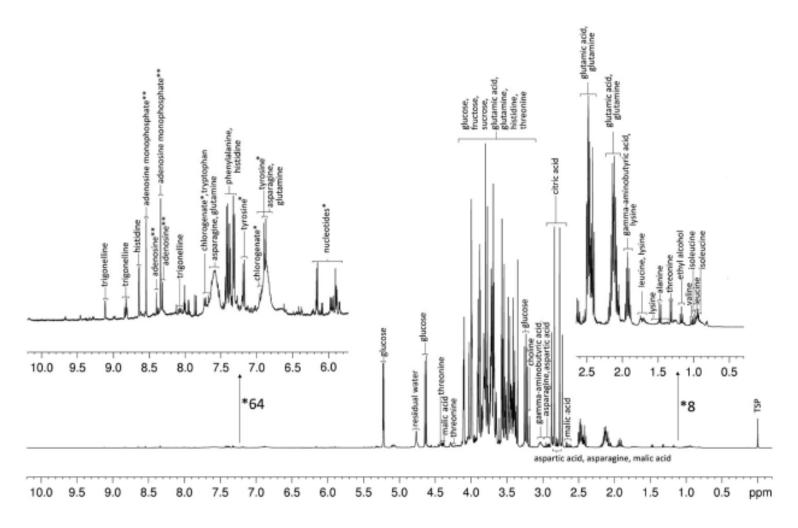


Figure 1. ¹H NMR spectrum of the aqueous phase of a tomato sample with an enlarged view on the spectral range from 0.5 to 2.6 ppm (*8) and from 5.8 to 10.0 ppm (*64), measured with a 400 MHz spectrometer. Signal assignments are based on reference spectra and the literature (*Mounet et al.; ⁴⁵ and **Le Gall et al. ⁵³).

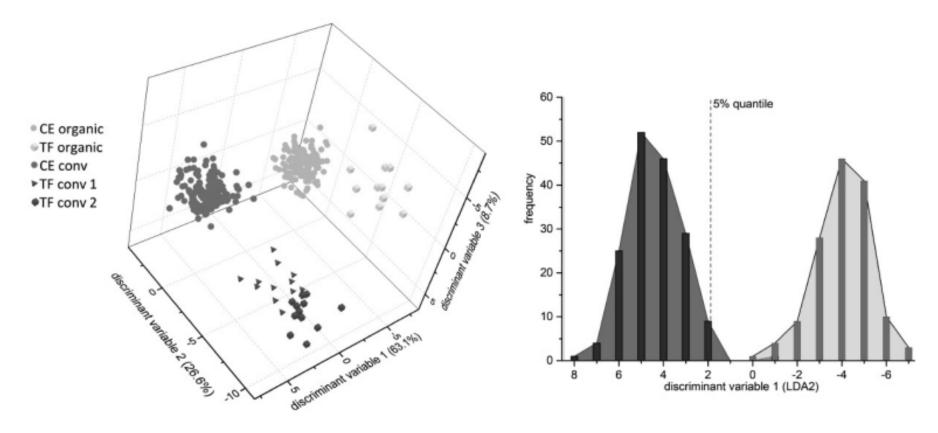


Figure 5. 3D scatter plot of discriminant variables 1, 2, and 3, with sphere symbols for CE samples, tetrahedral symbols for TF organic and TF conv 1, and cube symbols for TF conv 2: dark gray data points, conventional tomaotes; light gray data points, organic tomatoes (left side). Frequency histogram of the values of discriminant variable 1 obtained by LDA2: dark gray, conventional samples; light gray, organic samples (the auxiliary line shows the 5% quantile of the values of discriminant variable 1 for conventional tomato samples; right side).

Application of ¹H NMR Profiling To Assess Seed Metabolomic Diversity. A Case Study on a Soybean Era Population

George G. Harrigan,**,† Kirsten Skogerson,**,† Susan MacIsaac,[§] Anna Bickel,† Tim Perez,† and Xin Li†

ABSTRACT: ¹H NMR spectroscopy offers advantages in metabolite quantitation and platform robustness when applied in food metabolomics studies. This paper provides a ¹H NMR-based assessment of seed metabolomic diversity in conventional and glyphosate-resistant genetically modified (GM) soybean from a genetic lineage representing ~35 years of breeding and differing yield potential. ¹H NMR profiling of harvested seed allowed quantitation of 27 metabolites, including free amino acids, sugars, and organic acids, as well as choline, *O*-acetylcholine, dimethylamine, trigonelline, and *p*-cresol. Data were analyzed by canonical discriminant analysis (CDA) and principal variance component analysis (PVCA). Results demonstrated that ¹H NMR spectroscopy was effective in highlighting variation in metabolite levels in the genetically diverse sample set presented. The results also confirmed that metabolite variability is influenced by selective breeding and environment, but not genetic modification. Therefore, metabolite variability is an integral part of crop improvement that has occurred for decades and is associated with a history of safe use.

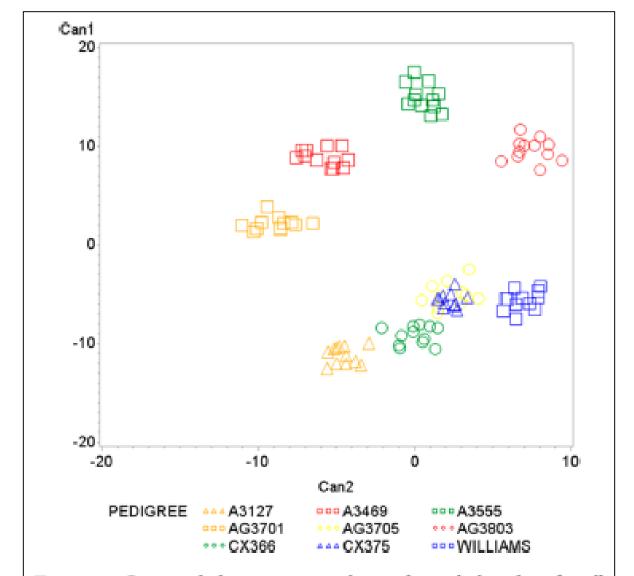


Figure 1. Canonical discriminant analysis of metabolite data for all nine varieties. On canonical 1 axis, the four older varieties (A3127, CX375, CX366, and Williams) can be distinguished from four of newer varieties (A3469, A3555, AG3701, and AG3803). AG3705 clustered with the older varieties and was shown (see text) to have some metabolic features similar to these.

NMR E INFRAROSSO

RICONOSCIMENTO
DELL'ORIGINE
CONVENZIONALE O
BIOLOGICA

NMR VALIDAZIONE DEL METODO COME ANALISI QUANTITATIVA

CIBO E SALUTE

LE QUALITÁ DEGLI ALIMENTI PER LA
PREVENZIONE
DELLE MALATIE CRONICHE NON
TRASMISSIBILI
E COME COADIUVANTI DELLE
TERAPIE MEDICHE

QUALITÁ DEGLI ALIMENTI

- Qualità nutrizionale: calorie; contenuto in nutrienti: zucchero, grassi, proteine, sali minerali, vitamine, fibre, ecc.
- Qualità organolettica: colore, fragranza, sapore, consistenza
- Qualità funzionale (o salutistica): (omega-6, omega-3), sostanze antitumorali (nutraceutici) contenuto in sostanze benefiche: antiossidanti, acidi grassi polinsaturi
- Qualità igienica: presenza di microrganismi patogeni (contaminazione microbica)
- Qualità sanitaria: presenza di sostanze nocive estranee o che si formano durante le trasformazioni industriali o durante la cottura: pesticidi, acidi grassi trans, antibiotici, ecc. (contaminazione chimica)
- Qualità etico-sociale: impatto delle pratiche di produzione agricola sulla salute dell'ambiente, benessere degli animali, salute e reddito degli agricoltori

QUALITÁ DEGLI ALIMENTI

Qualità funzionale o salutistica o....

EPIGENETICA

EPIGENETICA: LA DIETA DELLE MAMME INFLUISCE SULLA SALUTE DEI PICCOLI

Alimentare le mamme in gravidanza con cibi ricchi di donatori di metili (es. folati) modifica l'espressione del gene agouti (topolini gialli, obesi, iperinsulinemici, suscettibili ai tumori): 5 su 7 nati non esprimono il gene (Wolff et al. 1998, Dolinoy 1998)

ATTIVITA' DI ALCUNE ERBE AROMATICHE

ERBA AROMATICA COMPONENTI ATTIVITA'

Aglio Anice

Cardamomo

Chiodo di garofano

Coriandolo

Cumino

Fieno greco

Menta

Noce moscata

Pepe

Peperone Prezzemolo Rosmarino

Salvia Sedano Senape

Timo Zenzero allicina anetolo

cineolo

eugenolo linalolo

aldeide cuminica

trigonellina

mentolo sbinene, safrolo

piperina

capsaicina apiolo cineolo cineolo ftalidi

isotiocianato d'allile

timolo gingerolo stimolante la digestione, antisettico

stimolante la digestione

stimolante l'appetito e la digestione

stimolante l'appetito e la digestione, antisettico

stimolante la digestione

stimolante la digestione, calmante

stimolante l'appetito

stimolante l'appetito e la digestione, antisettico

stimolante digestivo, antisettico

stimolante digestivo

antidiarroico, antinfiammatorio, stimolante

stimolante l'appetito e la digestione, antisettico stimolante l'appetito e la digestione, antisettico stimolante la digestione, antisettico, calmante

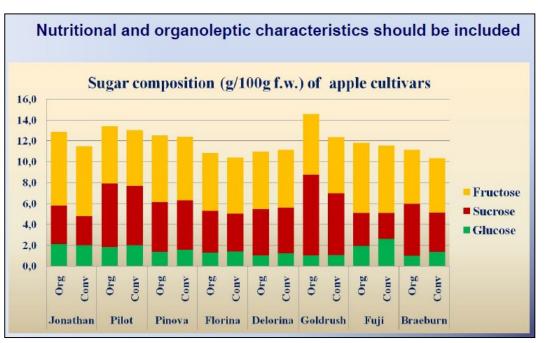
stimolante la digestione, antisettico, antiossidante

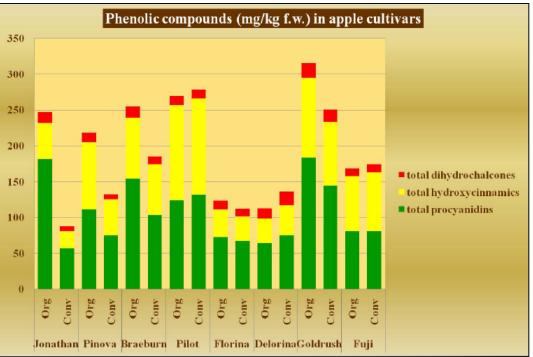
stimolante la digestione

stimolante la digestione, antisettico, antiossidante

stimolante gastrico

COMPONENTI BIOLOGICAMENTE ATTIVI DI FRUTTA E VERDURA


ALIMENTO	PRINCIPIO ATTIVO	ATTIVITA'
Cipolla	composti della cisteina	anticolesterolici
	derivati sulfidilici	anticolesterolici
	flavonoidi	antiossidanti, antiaggregazione pistrinica
Agrumi	antocianine	antiossidanti
	flavoni e flavonoidi	antiossidanti
Brassicacee	sulforafano (isotiocianato)	anticanceroceno
	vitamina C	antiossidante
Carciofi	composti fenolici	antiossidanti
Carote	carotenoidi	antinfiammatori antiossidanti
Fragole	acido ellargico	anticolesterolico, anticancerogeno
Frutti di bosco	antocianine, polifenoli	antiossidanti, protezione del microcircolo
Legumi	polifenoli	anticancerogeni
Lattuga	flavonoidi	antiossidanti, antiaggregazione piastrinica
Mele	flvonoidi, ac. Clorogenico	antiossidanti
Miele	polifenoli, flavonoidi	antiossidanti
Olio d'oliva	tocoferoli, polifenoli, flavonoidi	antiossidanti
Pere, pesche, prugne	flavonoidi, antocianine, flavononi	antiossidanti
Pomodoro	flavononi, licopene	antiestrogeni, ipocolesterolizzanti,
	antiossidanti,	anticancerogeni
Riso	polifenoli, gamma-orizanolo	modulatori metabolismo lipidico
Soia	isoflavoni, genisteina	attività estrogena, anticolesterolici, antiosteoporosi
Uva	resveratrolo	inibizione proliferazione cellule tumorali


MiPAAF Bioqualia project: Organic farming, sustainability and biodiversity

Flavio Paoletti National Institute for Food and Nutrition Research (INRAN) Via Ardeatina, 546 – 00178 Rome Italy

INTERNATIONAL SCIENTIFIC SYMPOSIUM
BIODIVERSITY AND SUSTAINABLE DIETS
UNITED AGAINST HUNGER

3 - 5 November 2010, FAO Headquarters, Rome

Effects of seasonal changes in feeding management under part-time grazing on terpene concentrations of ewes' milk

Eunate Abilleira¹, Mailo Virto³, Ana Isabel Nájera¹, Marta Albisu², Francisco José Pérez-Elortondo², Juan Carlos Ruiz de Gordoa³, Mertxe de Renobales³* and Luis Javier R. Barron¹*

Table 1. Mean terpene content (µg/kg) of milks from C-flocks† (n=4) throughout the season

	Indoor feeding	Transition feeding	Outdoor feeding	F test season/season*flock
Limonene	20-54±17-17	57-81±93-69	43·42±33·85	NS#
β-Phellandrene	11.61 ± 12.54	23-46±41-58	15-74±26-71	NS
β-Pinene	5-78±4-10	$8-09 \pm 4-90$	19-76±21-27	NS
α-Pinene	$3.02 \pm 3.41^{4.9}$	$0.91 \pm 2.33^{\circ}$	6.60±5.08b	
Terpinolene	ND	7-59±19-38	ND	NS
a-Terpinene	ND	3-40±8-71	ND	NS
Myrcene	ND	1.88 ± 4.83	ND	NS
Camphene	ND	ND	5·32±7·42	NS
Total terpenes	40.94±33-27	103-14±168-49	90.83 ± 82.26	NS

^{*}C-flocks: flocks grazing on cultivated private grasslands where ryegrass (Lollum perenne) and white clover (Trifolium repens) were predominant species

Table 2. Mean terpene content (µg/kg) of milks from NC-flocks† (n=5) throughout the season

	Indoor feeding	Transition feeding	Outdoor feeding	F test season/season*flock
Limonene	25·49±18·86	43.89 ± 47.07	95-71 ± 172-85	NS‡
β-Phellandrene	15·54±12·43	23-34±39-25	53.88 ± 106.37	NS
β-Pinene	8.69 ± 6.47	13·36±12·08	38.97 ± 94.11	NS
α-Pinene	3.82 ± 2.09	2.32 ± 4.33	16.64 ± 24.80	NS
Camphene	ND	1.93 ± 3.65	7.58 ± 20.40	NS
3-Carene	ND	ND	0.10 ± 0.48	NS
Total monoterpenes	33.54 ± 37.05	84.84 ± 97.95	212:83 ± 386:38	NS
β-Caryophyllene	ND	ND	127·72 ± 212·72	**
α-Humulene	ND	ND	36.41 ± 72.30	NS
a-Cubebene	ND	4.46 ± 18.40	ND	NS
Total sesquiterpenes	ND	4.46 ± 18.40^{25}	164·13 ± 224·09 ^b	
Total terpenes	53.54 ± 37.05^a	89·30±97·96 ^b	$376.95 \pm 392.50^{\circ}$	**

^{*}NC-flocks: flocks grazing on non-cultivated community-owned grasslands consisted of herbaceous plants such as Trifolium repens, Festuca rubra and Agrostis capillaries, and also other non-graminoid plants and some shrubs

^{*}NS: not significant; * P < 0.05; ND: not detected

⁵a, b Means in a row followed by a different superscript letter were significantly different (P<0-05).</p>

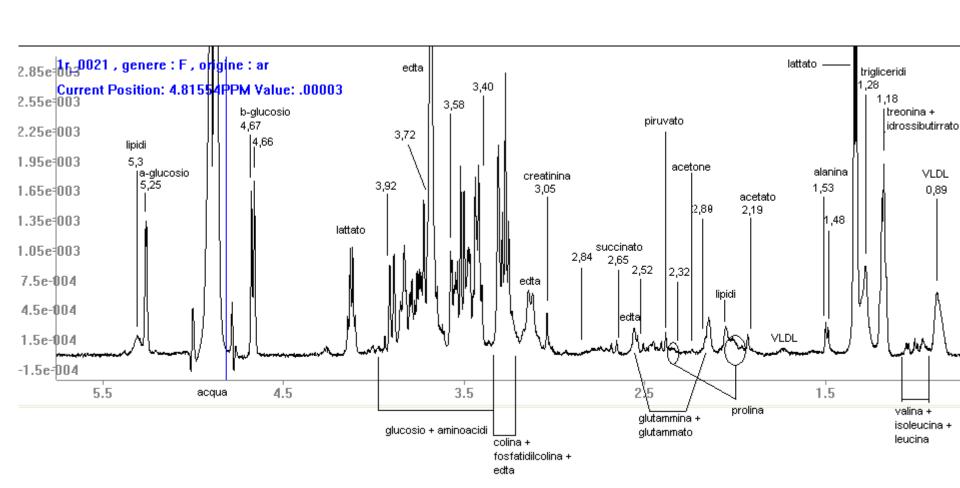
^{*}NS: not significant; * P≤0.05; ** P≤0.01; ND: not detected

⁵a, b, c Means in a row followed by a different superscript letter are significantly different

DIPARTIMENTO DI SCIENZE NEUROSCIENZE, BIOMEDICINA E DEL MOVIMENTO

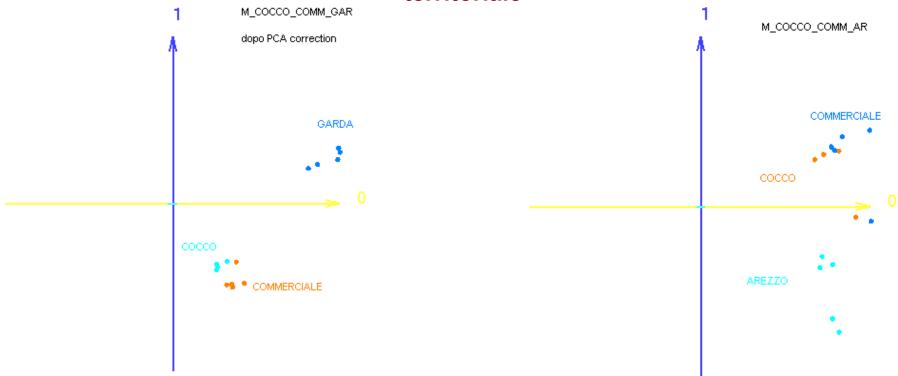
FOOD DISCOVERY: FRA MEDICINA E AGRICOLTURA

Daniele Degl'Innocenti


OLIO EXTRAVERGINE D'OLIVA DELLA PROVINCIA DI AREZZO

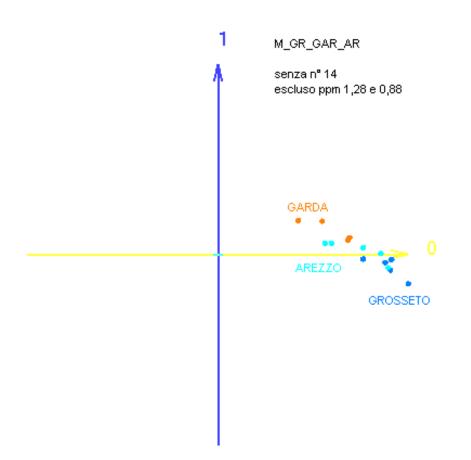
Effetti sul metabolismo

2009 - Ricerca dell'impatto di oli extravergini d'oliva sui metaboliti serici di animali da laboratorio


Ricerca dell'impatto di oli extravergini d'oliva sui metaboliti serici di animali da laboratorio

Esempio di tracciato NMR del siero di ratto

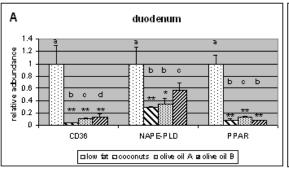
Ricerca dell'impatto di oli extravergini d'oliva sui metaboliti serici di animali da laboratorio

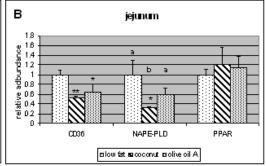

Analisi statistica: risultati dei trattamenti olio di cocco, commerciale e territoriale

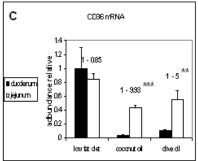
Commento: l'olio di cocco e l'olio extravergine commerciale" inducono profili metabolici simili e differenti dagli oli extravergini d'oliva "territoriali"

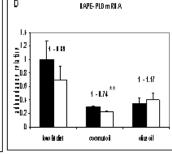
Ricerca dell'impatto di oli extravergini d'oliva sui metaboliti serici di animali da laboratorio

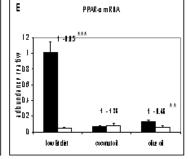
Analisi statistica: risultati dei trattamenti di oli extravergini d'oliva territoriali

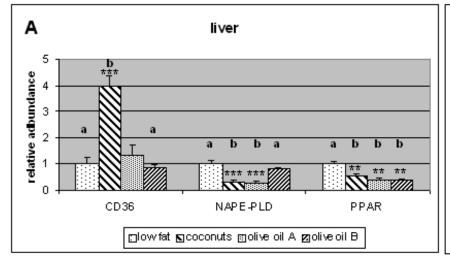

Commento: la comparazione diretta dei 3 oli extravergini d'oliva territoriali evidenzia profili metabolici simili ma distinti

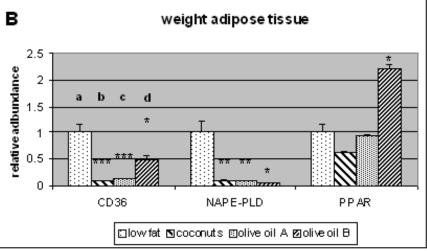



WORKING PACKAGE 6 Six foods


RISULTATI DELLA PCR QUANTITATIVA: CORSA SU GEL DI AGAROSIO 1,5 Carne Formaggio Oliva Margarina Castagna Cocco Pane Beta actin DNMT1 Castagna Formaggio Oliva Margarina Carne Cocco Pane Beta actin DNMT3a Castagna Formaggio Oliva Margarina Carne Cocco Pane Beta actin DNMT3b


WORKING PACKAGE 5 Olive & Coconut oil





WORKING PACKAGE 6 Six foods

TABELLA PUNTEGGI DI VALUTAZIONE DELL'ESPRESSIONE GENICA							
	Oliva	Carne	Formaggio	Pane	Cocco	Castagna	Margarina
DNMT1	6	2	4	4	2	1	2
DNMT3a	6	5	2	2	4	3	1
DNMT3b	6	6	6	6	5	1	1
Totale	18	13	12	12	11	5	4
Media	6,0	4,3	4,0	4,0	3,7	1,7	1,3
Legenda:	1 = espress	ione non ril	evata				
	2 = espressione molto bassa 3 = espressione bassa 4 = espressione media 5 = espressione buona 6 = espressione ottima						

Conclusioni

Da questo studio emerge la maggiore capacità dell'olio extravergine di oliva di indurre la metilazione del DNA in misura maggiore rispetto agli altri alimenti, fornendo la misura delle sue capacità protettive nei confronti del DNA. Anche altri alimenti, tra cui la carne di manzo di razza Chianina, il formaggio stagionato "Abbucciato" il pane con i suoi "Carboidrati" e anche l'olio di "Cocco", presentano in parte questa attività che, al contrario, è posseduta in minima parte dalla farina di castagne e dalla margarina. Tramite questa indagine di epigenetica si è trovato le conferme delle opposte interazioni che l'olio extravergine di oliva e la margarina hanno con l'organismo, fin nelle sue parti più intime come il DNA. Da questo studio emerge chiara l'importanza delle indagini epigenetiche per la valutazione nel lungo periodo dell'impatto di una alimento sull'organismo.

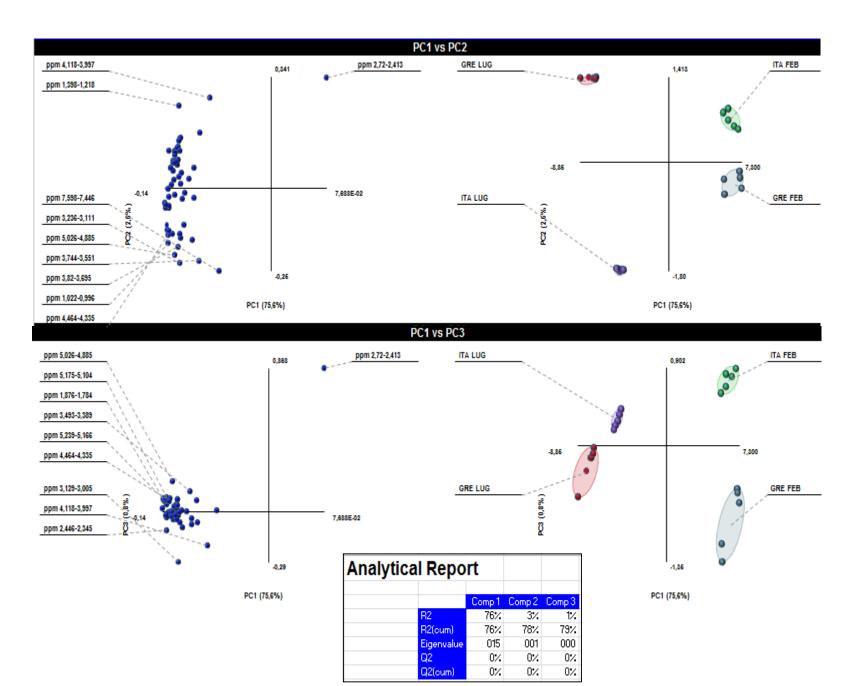
DIP. NEUROLOGIA, BIOMEDICINA E MOVIMENTO E VRM srl

JOINT PROJECT "INNUFISH"

Development of innovative methods to assess the nutritional quality of fish

RISULTATI AL 31/12/2016

DIP. NEUROLOGIA, BIOMEDICINA E MOVIMENTO E VRM srl


JOINT PROJECT "INNUFISH"

Development of innovative methods to assess the nutritional quality of fish

METABOLOMICA NMR SUGLI ALIMENTI

NMR - FASE ORGANICA - PLSEDA SU INTEGRALI

NMR – METABOLITI ASSEGNATI FASE ORGANICA

	start	end		
peak#	max	min	med	
1	9,339	7,75	8,52725	
2	7,598	7,446	7,52008	
3	7,377	7,131	7,26058	
4	6,49	6,052	6,25633	
5	6,126	5,846	5,9709	
6	5,874	5,722	5,8066	unsaturated x-1 acyl group
7	5,766	5,562	5,67438	
8	5,446	5,353	5,39378	acyl group
9	5,358	5,285	5,3227	CH=CH in UFA (di acidi grassi)
10	5,29	5,233	5,26198	Glyceryl-C2 in PC/PE/TG (-CHOCOR (glyceryl group)); CH2 in sn2 di triacilglicroli
11	5,239	5,166	5,20428	CH diacilglicerolo PE, PC
12	5,175	5,104	5,13833	
13	5,114	5,028	5,07915	
14	5,053	4,955	5,0332	unsaturated x-1 acyl groups
15	5,026	4,885	4,9773	
16	4,464	4,335	4,39135	4,43-4,10 -CH2OCOR (glyceryl group); CH2OP di PC
17	4,359	4,22	4,29643	CH2 in posizione sn1 di diacilgliceroli di PE e PC
18	4,211	4,085	4,14263	Glyceryl-C1 in PC/PE/TG
19	4,118	3,997	4,06315	
20	4,061	3,851	3,96488	
21	3,916	3,717	3,81788	CH2 in sn3 di digliceridi di PC e PE
22	3,82	3,695	3,73123	CH2N di PC
23	3,744	3,551	3,65988	CH2N di PC
24	3,597	3,466	3,52315	
25	3,493	3,389	3,4405	
26	3,415	3,223	3,33598	-N(CH3)3 (phosphatidylcholine, PC); (CH3)3 N di PC
27	3,262	3,181	3,22015	
28	3,236	3,111	3,1734	

NMR - METABOLITI ASSEGNATI FASE ORGANICA

29	3,129	3,005	3,0627	-O-CH2-CH2-NH2 in PE; CH2N di PE
30	2,887	2,826	2,854	=CH-CH2-CH= in PUFA (except 18:2); CH2 di acidi praggi polinsaturi w3
31	2,83	2,786	2,8086	other acyl groups
32	2,79	2,732	2,765	diunsaturated x-6 acyl groups; CH2 diallilici dell'acido linoleico
33	2,72	2,413	2,5573	
34	2,446	2,345	2,3916	DHA acyl group; CH2-2 e 3 DHA
35	2,365	2,279	2,3169	acyl group except for DHA acyl group
36	2,288	2,241	2,2663	Cholesterol-C4
37	2,243	2,13	2,1893	acyl C2
38	2,111	2,061	2,0881	CH=CH-CH2-CH=CH in PUFA (2,12-1,79 CH2 allylic to dis double bonds)
39	2,084	2,069	2,0767	
40	2,096	2,058	2,067	
41	2,062	2,031	2,0476	CH=CH-CH2-CH=CH in 18:1FA
42	2,035	1,961	2,0051	protoni allilici di tutti gli acidi grassi ecceto DHA
43	1,876	1,784	1,8342	
44	1,747	1,662	1,7023	-OCO-CH2-CH2- (EPA and ARA acyl groups); CH2-3 EPA
45	1,668	1,519	1,6016	acyl group except for DHA, EPA and ARA acyl groups; CH2-3 di tutti gli acidi grassi eccetto DHA e EPA
46	1,398	1,218	1,3246	
47	1,42	1,197	1,304	-(CH2)n- (acyl group)
48	1,373	1,197	1,2539	acyl C-4 to C (w3), saturated chains; (w2) CH2, saturated chain; isopropyl methyl; CH2 acidi grassi
49	1,173	1,11	1,1438	Cholesterol
50	1,126	1,028	1,0741	Cholesterol
51	1,022	0,996	1,0085	-CH3 (polyunsaturated x-3 acyl group); Terminal CH3 in w-3 polynsaturated FA chains
52	0,998	0,945	0,9729	CH3(C-21) in free cholesterol; 0,945-0,706 Terminal CH3 in FA chains except w-3 polynsaturated Fas
53	0,929	0,913	0,9215	CH3(C-21) in free cholesterol; 0,945-0,706 Terminal CH3 in FA chains except w-3 polynsaturated Fas
54	0,917	0,905	0,9114	CH3(C-21) in free cholesterol
55	0,908	0,895	0,9025	CH3(C-26+C-27) in total cholesterol + -CH3 in PUFA,
56	0,899	0,839	0,873	terminal methyl in alkyl chain
57	0,793	0,752	0,7731	Terminal CH3 in FA chains except w-3 polynsaturated Fas
58	0,7	0,655	0,6786	CH3(C-18) in total cholesterol (Cholesterol-CH3 (position 18)); CH3-18 colesterolo
59	-0,102	0,105	0,003 <u>5</u>	

NMR – METABOLITI ASSEGNATI FASE ACQUOSA

COMPOSTO	start	end	rif. Grafico	peak	rif
niacinamide	8,96	8,92	d 28 p 39	2	ppm 8,9455
niacinamide	8,732	8,705	d 28 p 39	4	ppm 8,7185
carnosina	8,607	8,59		6	ppm 8,6005
ADP/ATP	8,564	8,549	d 28 p 28	8	ppm 8,55
formiato	8,47	8,43		10	ppm 8,4575
inosina	8,375	8,33	d 28 p 27	12	ppm 8,357
niacinamide	8,276	8,21	d 32	13	ppm 8,246
istidina	8,021	8,008	d 28 p 35	16	ppm 8,0145
carnosina	7,886	7,86		18	ppm 7,858
niacinamide	7,622	7,57	d 28 p 39	21	ppm 7,6035
triptofano	7,56	7,51		22	ppm 7,5435
fenilalanina	7,4	7,354	d 28 p 36	24	ppm 7,3905
fenilalanina	7,356	7,308	d 28 p 36	25	ppm 7,336
fenilalanina	7,308	7,234	d 28 p 36	26	ppm 7,2745
tirosina	7,215	7,18	d 28 p 33	27	ppm 7,211
tirosina	7,225	7,149	d 28 p 33	28	ppm 7,1675
tirosina	6,923	6,87	d 27 p 33	30	ppm 6,908
inosina	6,126	6,08	d 28 p 33	32	ppm 6,108
a-glucosio	5,4	5,26	d 26 p 30	35	ppm 5,3275
ADP/ATP	4,6	4,533	d 26 p 28	38	ppm 4,5665
inosina	4,3	4,205		42	ppm 4,2575
lattato	4,147	4,08	d 26 p 5	43	ppm 4,117
colina	4,081	4,056		44	ppm 4,065
lattato	4,04	3,99		45	ppm 4,016
fenilalanina	3,99	3,97		46	ppm 3,9805
tirosina	3,97	3,95		47	ppm 3,9635
creatina	3,945	3,924	d 26 p 20	48	ppm 3,9345

NMR - METABOLITI ASSEGNATI FASE ACQUOSA

		11710020117	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
betaina	3,887	3,868	51 ppm 3,8775
a-glucosio	3,868	3,847	52 ppm 3,856
inosina	3,843	3,822	53 ppm 3,8325
isoleucina	3,687	3,677	60 ppm 3,682
isoleucina 💮 💮	3,654	3,639 d26 p1	63 ppm 3,6465
valina	3,639	3,62 d26p3	64 ppm 3,6295
treonina	3,619	3,595 d26p4	65 ppm 3,607
glicina	3,575	3,556 d26p24	66 ppm 3,5635
taurina	3,462	3,387 d26p23	69 ppm 3,4355
prolina	3,336	3,304	72 ppm 3,314
TMAO	3,286	3,256 d26p22	73 ppm 3,2695
taurina	3,248	3,225 d26p23	74 ppm 3,2365
colina	3,219	3,194 d 26 p 21	75 ppm 3,2065
fenilalanina	3,162	3,145	77 ppm 3,1505
tirosina	3,085	3,063	79 ppm 3,079
oreatina 💮 💮	3,062	3,017 d 25 p 20	80 ppm 3,0395
TMA	2,942	2,895 d 25 p 19	81 ppm 2,914
aspartato	2,81	2,79 d25 p 17	82 ppm 2,806
metionina	2,645	2,516	86 ppm 2,547
succinato	2,577	2,48 d 25 p 14	87 ppm 2,5005
ac malico	2,416	2,405 d 25 p 13	89 ppm 2,4105
prolina	2,382	2,336 d 25 p 12	91 ppm 2,35
metionina	2,19	2,102 d 25 p 11	93 ppm 2,1485
acetato	2,026	1,914 d25p9	95 ppm 1,9065
lisina	1,79	1,704	96 ppm 1,757
lattato	1,376	1,286 d25p4	100 ppm 1,33
isoleucina	1,264	1,19	101 ppm 1,231
valina	1,063	1,032 d 25 p 3	102 ppm 1,0475
valina	1,006	0,983 d25p3	104 ppm 0,9945
leucina 💮 💮	0,981	0,95 d25p2	105 ppm 0,9655
isoleucina 💮	0,95	0,925 d25p1	106 ppm 0,9375

JOINT PROJECT «VACOOK»

NMR (Nuclear Magnetic resonance) o spettroscopia di risonanza magnetica nucleare

CONDIZIONI DI COTTURA:

BUSTA SOTTOVUOTO = pressione interna alla busta uguale alla pressione esterna; presenza di residui d'aria e quindi di ossigeno (condizioni di microaerofilia)

VASO SOTTOVUOTO = pressione interna notevolmente inferiore a quella esterna; presenza di residui d'aria e quindi di ossigeno (condizioni di microaerofilia)

BUSTA VAPORE

BUSTA ACQUA

BUSTA FORNO

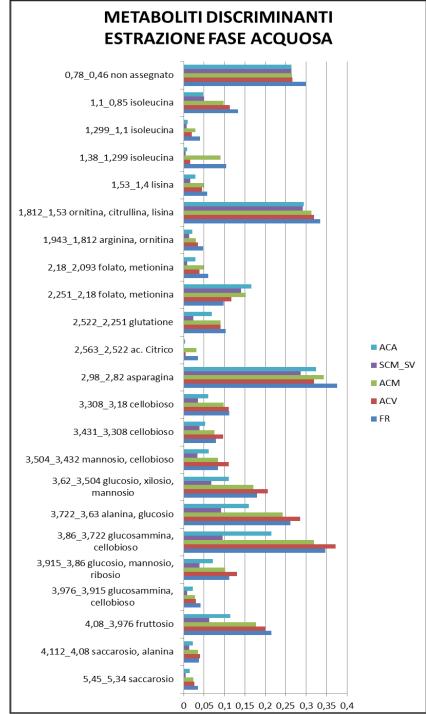
ASPARAGO: RISULTATI SULLE SOSTANZE SOLUBILI IN ACQUA

Le sostanze riportate nel grafico sono quelle che determinano le differenze statistiche tra i diversi trattamenti

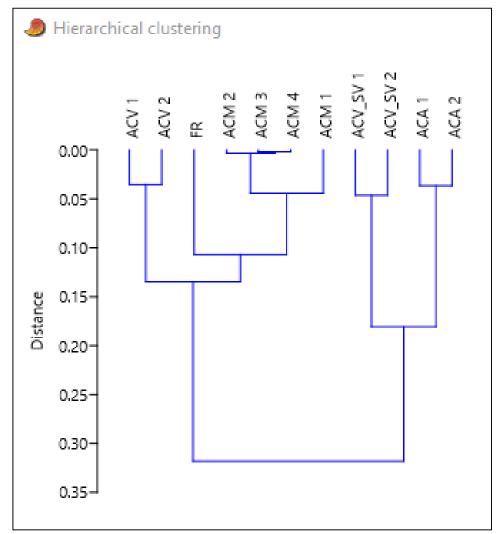
Legenda:

ACA: busta sottovuoto con cottura in acqua;

SCM_SV: busta sottovuoto con cottura al vapore;


ACM: busta sottovuoto con cottura in forno a

microonde;


ACV: contenitore rigido sottovuoto con cottura in forno a

microonde;

FR: prodotto fresco

ASPARAGO: RISULTATI SULLE SOSTANZE SOLUBILI IN ACQUA

I trattamenti che si trovano più vicini al fresco (FR) sono la cottura in contenitore rigido al microonde (ACV) e quella in busta al microonde (ACM)

Legenda:

ACA: busta sottovuoto con cottura in acqua;

SCM_SV: busta sottovuoto con cottura al vapore;

ACM: busta sottovuoto con cottura in forno a microonde; ACV: contenitore rigido sottovuoto con cottura in forno a

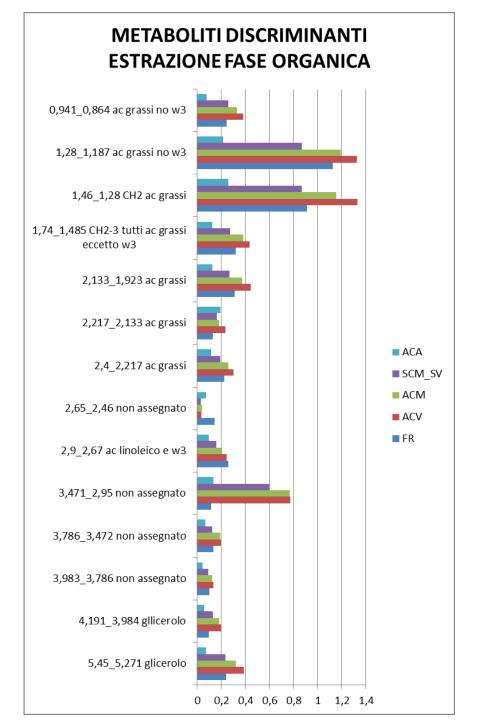
microonde;

FR: prodotto fresco.

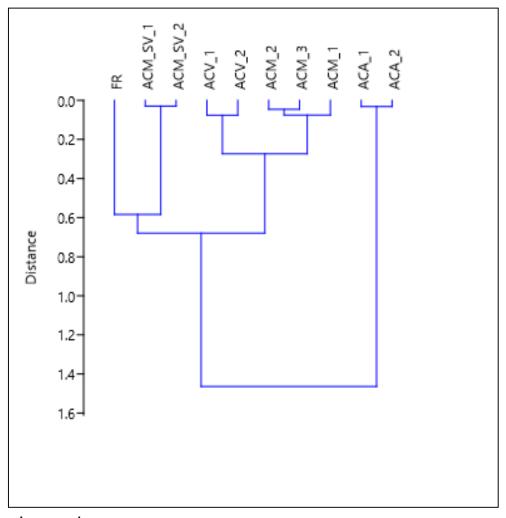
ASPARAGO: RISULTATI SULLE SOSTANZE LIPOSOLUBILI (GRASSI)

Le sostanze riportate nel grafico sono quelle che determinano le differenze statistiche tra i diversi trattamenti

Legenda:


ACA: busta sottovuoto con cottura in acqua; SCM SV: busta sottovuoto con cottura al vapore;

ACM: busta sottovuoto con cottura in forno a


microonde;

ACV: contenitore rigido sottovuoto con cottura in forno a microonde;

FR: prodotto fresco

ASPARAGO: RISULTATI SULLE SOSTANZE LIPOSOLUBILI (GRASSI)

I trattamenti che si trovano più vicini al fresco (FR) sono la cottura in busta al vapore (ACM_SV), quindi quella in contenitore rigido al microonde (ACV) e quella in busta al microonde (ACM). Quella in busta in acqua (ACA) risulta essere la più modificata rispetto al prodotto fresco.

Legenda:

ACA: busta sottovuoto con cottura in acqua;

SCM_SV: busta sottovuoto con cottura al vapore;

ACM: busta sottovuoto con cottura in forno a microonde;

ACV: contenitore rigido sottovuoto con cottura in forno a microonde;

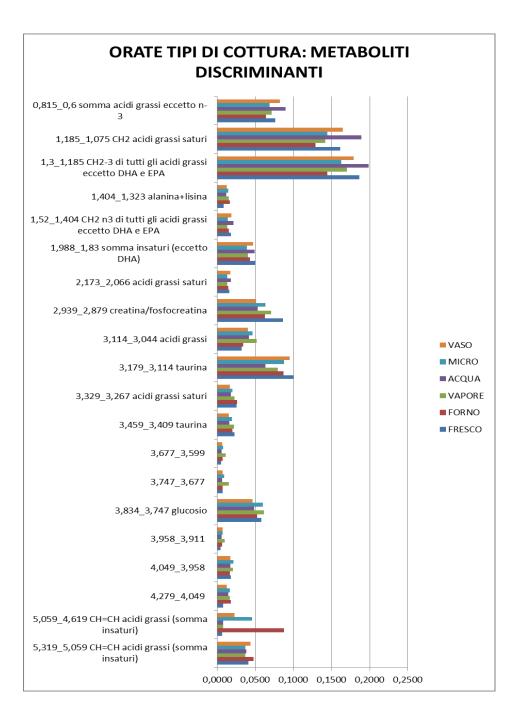
FR: prodotto fresco.

ORATA: RISULTATI (TUTTE LE SOSTANZE INSIEME)

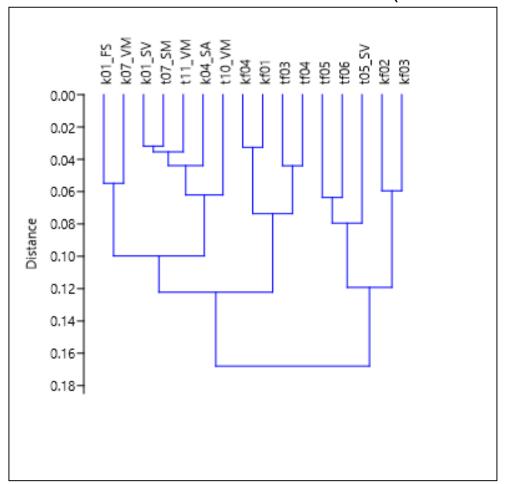
Le sostanze riportate nel grafico sono quelle che determinano le differenze statistiche tra i diversi trattamenti

Legenda:

VASO: contenitore rigido sottovuoto con cottura in forno a microonde:


MICRO: busta sottovuoto con cottura in forno a microonde;

ACQUA: busta sottovuoto con cottura in acqua;


VAPORE: busta sottovuoto con cottura al vapore;

FORNO: cottura in forno tradizionale

FRESCO: prodotto fresco.

ORATA: RISULTATI (TUTTE LE SOSTANZE INSIEME)

Netta differenza tra orate crude e cotte (ad eccezione di un campione in busta sottovuoto cotto al vapore). La cottura che modifica maggiormente le sostanze contenute è quella in forno tradizionale. Quelle che modificano meno le sostanze contenute sono la cottura in contenitore rigido sottovuoto in forno a microonde e la cottura in busta sottovuoto al vapore e in acqua.

Legenda:

Kf04, kf01, tf03, tf04, tf05, tf06, kf02, kf03: prodotto fresco

K01_FS: busta sottovuoto in forno tradizionale;

K07_VM, t11_VM, t10_VM: contenitore rigido sottovuoto con cottura in forno a microonde:

K01_SV, t05_SV: busta sottovuoto con cottura a vapore;

T07_SM: busta sottovuoto con cottura in forno a microonde;

K04 SA: busta sottovuoto con cottura in acqua.

LA RISONANZA MAGNETICA può MISURARE LE QUALITÁ DEL CIBO Soprattutto quella

FUNZIONALE O NUTRACEUTICA O EPIGENETICA

GRAZIE DELL'ATTENZIONE