

Alimentazione convenzionale e alimentazione biologica in gravidanza:

Renata Alleva, PhD
Specialista in Scienza dell'Alimentazione
Dipartimento di Scienze Biomediche e
Neuromotorie Università di Bologna, ISDE

Alleva R.

Programming Nutrizionale:

Come le scelte alimentari dalla fase fetale dei primi mesi e possono davvero condizionare la salute del futuro adulto.

Alimentazione materna durante la gestazione vita fetale

Alimentazione durante allattamento svezzamento prima infanzia vita post-fetale

Intrauterina neonatale

Infanzia Adolescenza Pubertà

Età Adulta Senescenza

Siamo quel che mangiamo

....ma mon solo

Contaminanti nella catena alimentare. Cosa Preoccupa?

Diossine

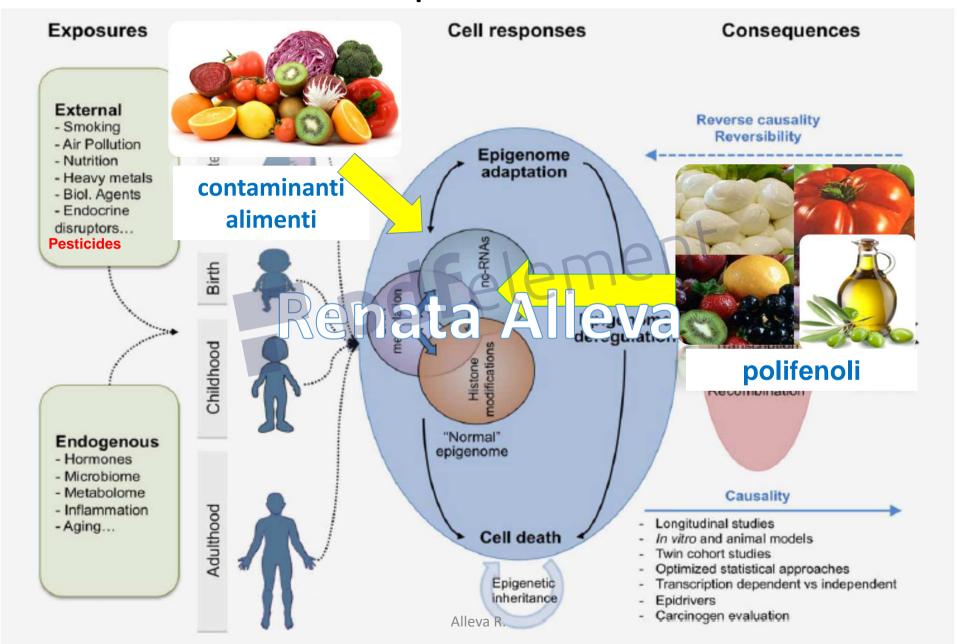
I PCB provocano il cancro negli esseri umani, inseriti nel Gruppo 1 della classificazione IARC (cancerogeni certi) interferenti endocrini

Arsenico

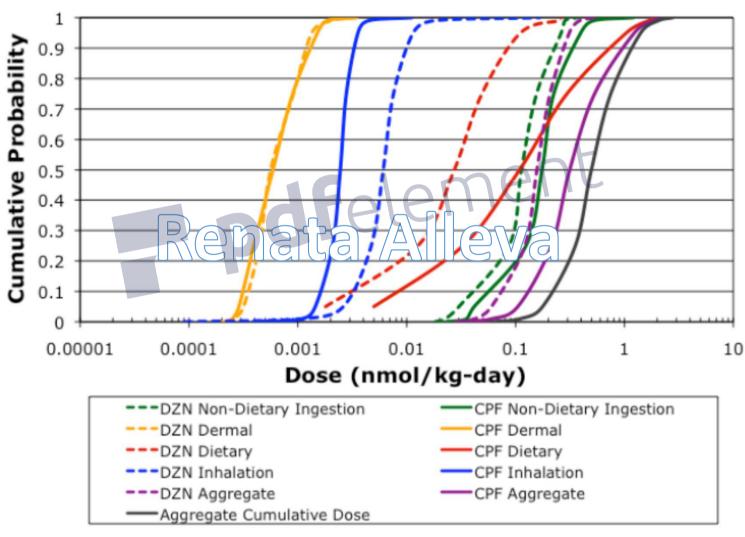
inseriti nel Gruppo 1 della classificazione IARC (cancerogeni certi)

Cadmio

Gruppo 1 IARC (cancerogeno certo)


Pesticidi

Alcuni inseriti nel Gruppo
1 IARC (cancerogeni
certi) altri definiti
interferenti endocrini
neurotossici clorpirifos)
altri probabili
ncerogeni gruppo 2A,
RC (glifosato) e
interferenti endocrini


Metilmercurio

Neurotossico, (autismo) disturbi del neurosviluppo

L'Esposoma

Effetto cumulativo

Alleva R.

Tossicità cumulativa

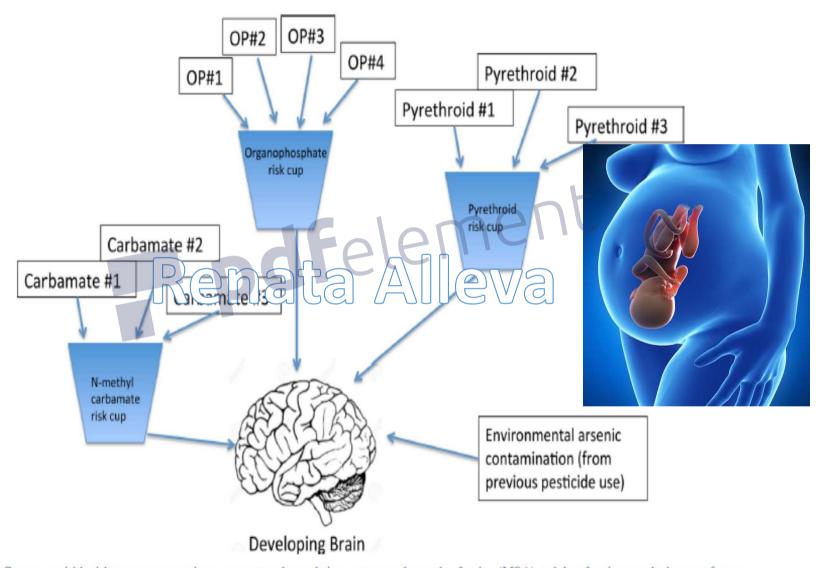


Figure 3. Current pesticide risk assessment requires aggregate and cumulative assessment by mode of action (MOA) and therefore ignores the impact of cumulative exposures to multiple compounds acting by different mechanisms to disfuse the same organ system.

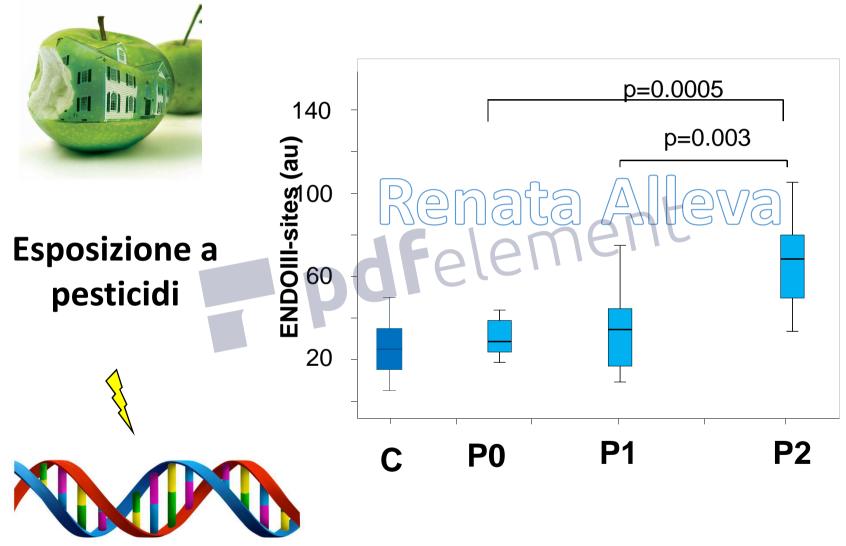
INCREASED RISK OF CHILDHOOD BRAIN TUMORS AMONG CHILDREN WHOSE PARENTS HAD FARM-RELATED PESTICIDE EXPOSURES DURING PREGNANCY

Renata Alleva

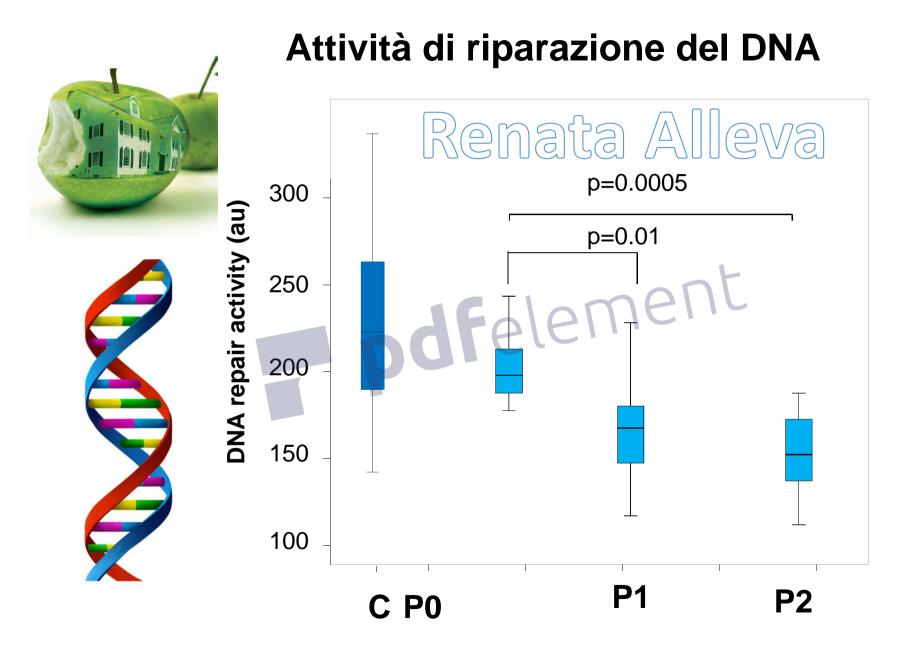
Summary of results of meta-analyses of the association between pesticides and childhood brain tumors

Time period	Exposure category	Number of studies in estimate	Summary risk estimate (95% confidence interval)
Dragonagation	Maternal exposures	1	0.87 (0.29–2.60)
Preconception	Paternal exposures	3	2.29 (1.39–3.78)
	Maternal exposures (agricultural)	5	1.48 (1.18–1.84)
Pregnancy	Maternal exposures (non-agricultural)	7	1.36 (1.10–1.68)
	Paternal exposure	5	1.63(1.16–2.31)
Childhood	Agricultural exposures	4	1.35 (1.08–1.70)
	Non-agricultural exposures	5	1.32 (1.04–1.67)

JP J Biostat. 2014 November; 11(2): 89–101.

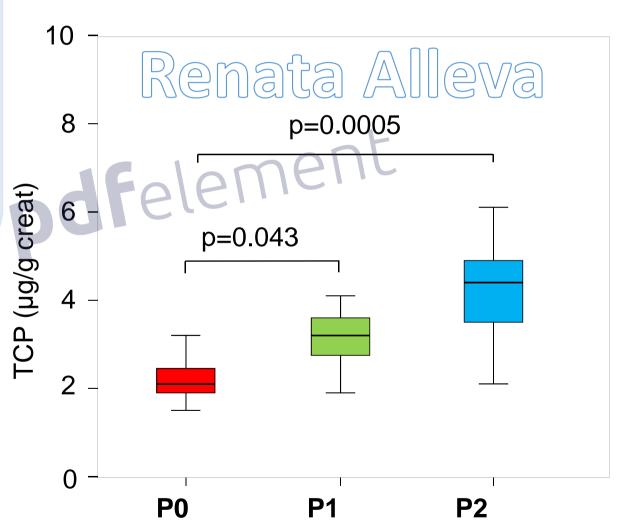


Residenti in Val di NON Esposti a pesticidi per motivi residenziali

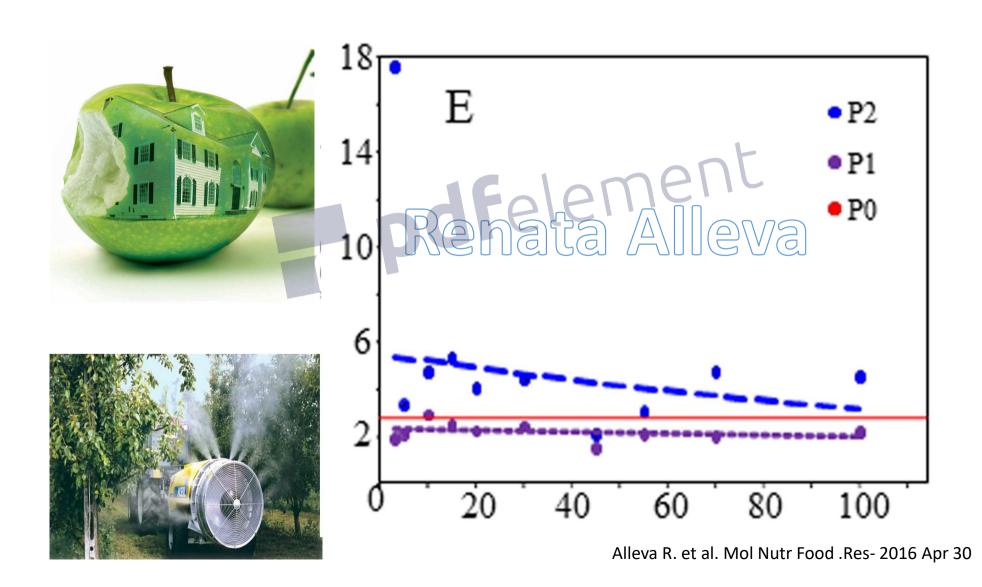

		esticides expo opulation (n=		Pesticides non-exposed population (n=40)				
Demographic/anthropo indices	mean mean	so A	11eV	mean	SD	n		
Age (years)	38.8	20.4		38.9	15.5			
Gender (Male/Female)			14/20			19/21		
Weight (kg)	56.3	17.5		58.3	17.5			
Height (cm)	159.7	21.0		169.7	11.0			
BMI (Kg/m²)	21.2	2.8		22.0	2.8			
Smoking (yes/no)			6/28			9/31		

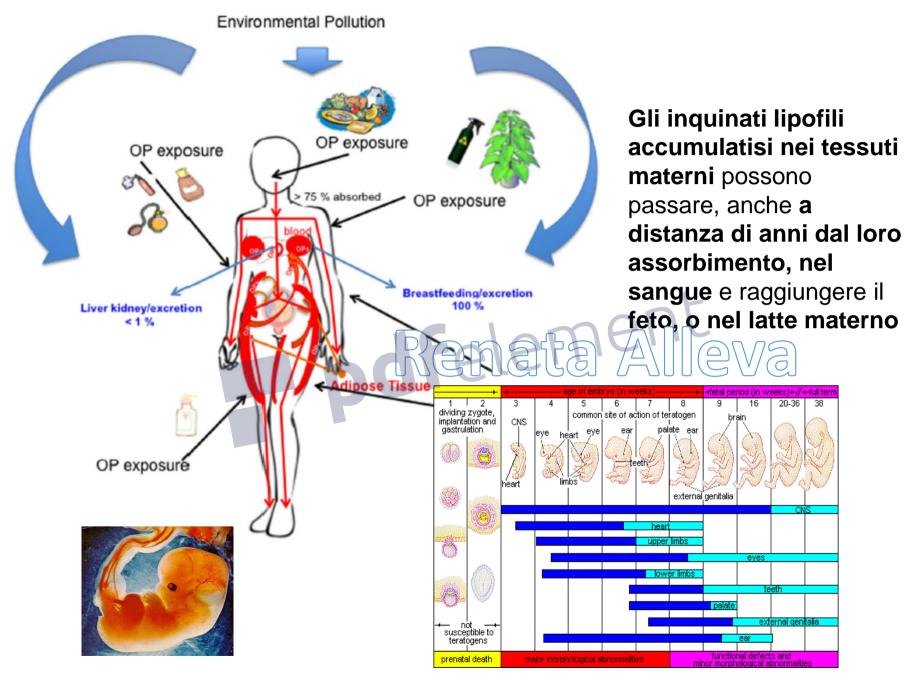
Nessuno dei partecipanti allo studio ha esposizione è per motivi lavorativi (agricoltore)

Danno al DNA: basi pirimidiniche ossidate

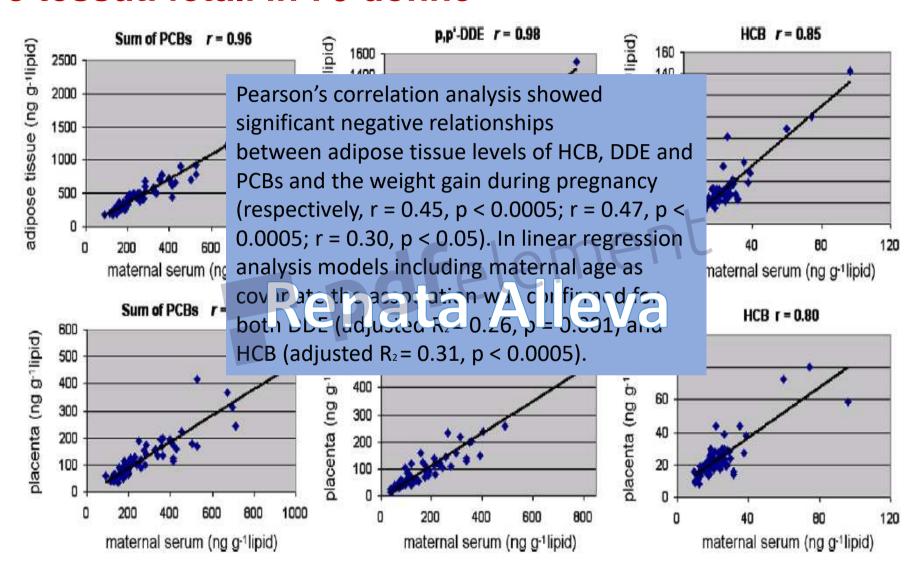

Alleva R. et al. Mol Nutr Food .Res- 2016

Livelli di Clorpirifos urinari


Dopo i trattamenti aumentano proporzionalmente i metaboliti dei pesticidi nelle urine.


Prova che c'è esposizione

Livelli di TCP urinari e distanza delle abitazioni dai meleti



Environment International xxx (2017):

Alleva R.

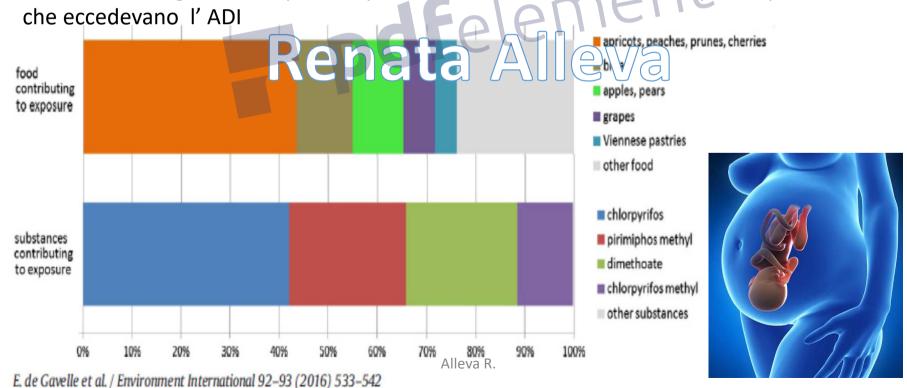
Correlazione tra livelli di organoclorurati nel siero e tessuti fetali in 70 donne

Contents lists available at ScienceDirect

Environment International

environment INTERNATIONAL

journal homepage: www.elsevier.com/locate/envint


Full length article

Chronic dietary exposure to pesticide residues and associated risk in the French ELFE cohort of pregnant women

Erwan de Gavelle ^{a,*}, Blandine de Lauzon-Guillain ^b, Marie-Aline Charles ^b, Cécile Chevrier ^c, Marion Hulin ^a, Véronique Sirot ^a, Mathilde Merlo ^a, Alexandre Nougadère ^a n=14,099 donne

Valutato intake giornaliero per 317 pesticidi e caratterizzato il rischio per 14 pesticidi


.____

Tutte contaminate I risultati del test

uattordici ragazze incinte si sono offerte volontarie per il test sulle urine. Tutte vivevano a Roma da anni, in una zona, dunque, non "a rischio". I campioni di urine sono stati raccolti in appositi contenitori sterili e spediti refrigerati al laboratorio tedesco che ha realizzato le analisi che trovate in questa pagina.

Il test del me

Alce Nero	Assente
Farina tipo 00	
Almaverde bio	Assente
Farina per pizza	
Barilla Farina tipo 00	Assente
Barilla	Assente
Farina integrale	ASSEILE
De Cecco Semola di grano duro	Assente
Divella Farina di grano tanaro	Assente
	Assente
Garofalo Il buono della farina integrale senz'altro	Assente
Gran mugnaio Farina per pizza	Assente
Le terre di Ecor Farina di grano tenero	Assente
Lo Conte Farine magiche Manitoba	0,023 mg/Kg
Lo Conte Farine magiche Pane e focaccia	Assente
Molino Rossetto Farina macinata	Assente
Molino Spadoni Farina d'America Manitoba	0,098 mg/Kg
Naturasì Farina tipo 00	Assente
Sarchio Falley@Pmais	Assente

Dieta ed esposizione a pesticidi

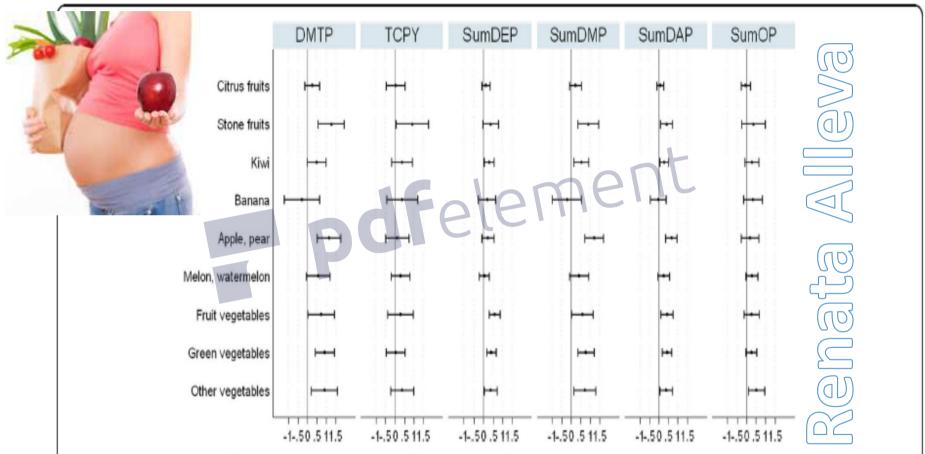
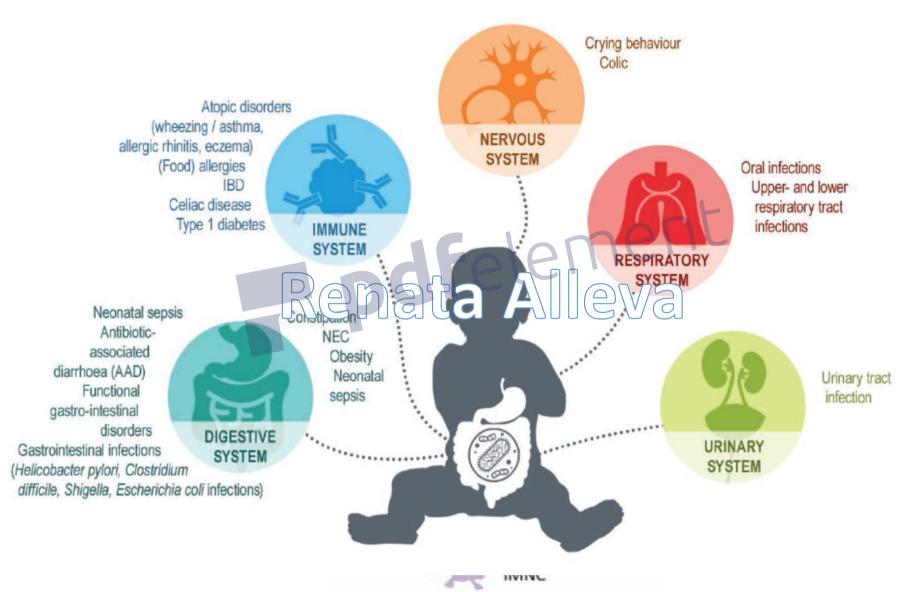



Fig. 1 Association between the intake of different types of fruits and vegetables during pregnancy and the OP concentrations. All models were adjusted by smoking habit, educational level, season of sampling, zone of residence, yard with plants at home, application of outdoor pesticides, residence near fields or greenhouses, fruit intake, vegetable intake, body mass index before pregnancy, and creatinine.

Shaping of the immune system starts with the MATERNAL microbiota

Alleva R. meranour syndrome

Esposizione a Pesticidi e gravidanza

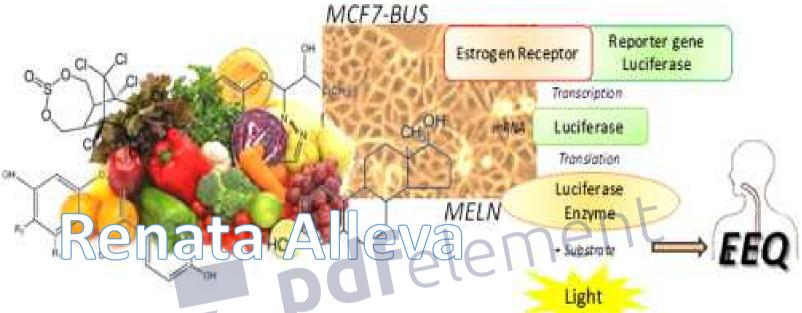
Uno studio condotto su 366 donne in gravidanza ha dimostrato che L'esposizione agli OP comporta una riduzione del periodo di gestazione di mezza settimana e riduce il peso dei neonati, effetto che può avere un forte impatto sulla salute futura

La perdita di peso alla nascita causata dall'esposizione ai pesticidi OP è comparabile a quella che si osserva nelle fumatrici

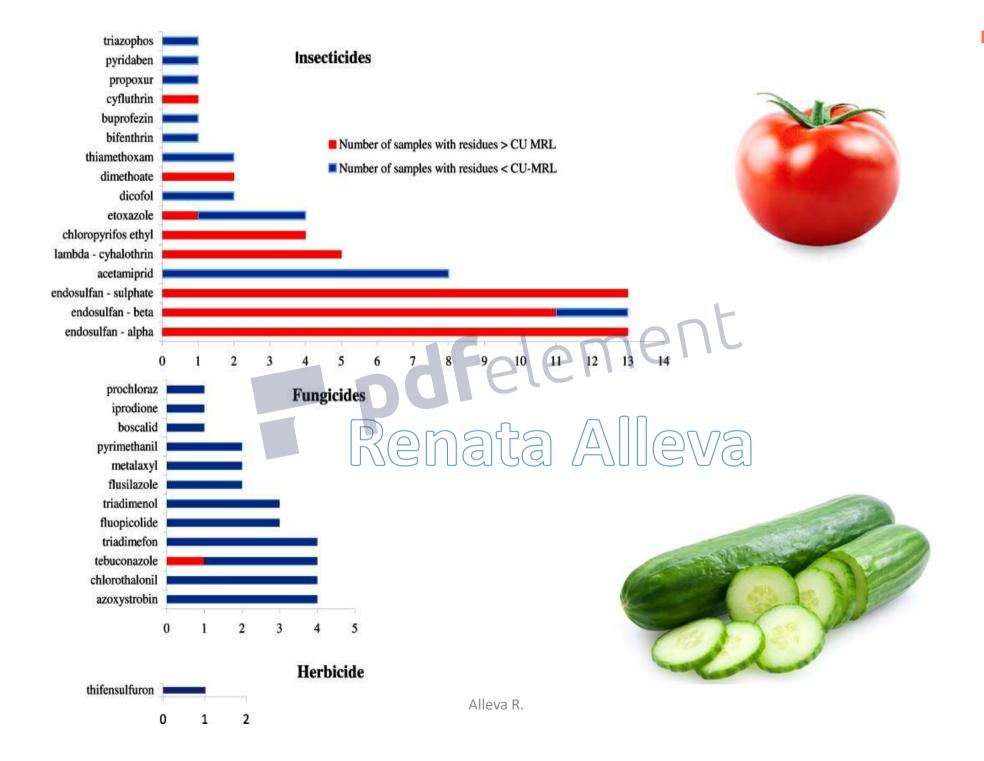
Difetti del tubo neurale e difetti fetali

Mamme inquinate: sostanze pericolose in tutte le gestanti

Uno studio americano segnala che nel corpo del 99% delle donne in gravidanza ci sono sostanze nocive che possono essere trasmesse al feto.



- Renata Alleva


Difetti di sviluppo nel feto e problemi alla nascita.

Attività estrogenica di frutta e verdura

- Attività estrogenica in relazione a residui di pesticidi nella frutta e verdura calcolando il 17B-estradiolo equivalente (EQQ) in MCF-7 BUS
- Dei 24 campioni di frutta e verdura 14 contenevano da 1 a 4 tipi di pesticidi (0,02-1,19ppm LMR) 10 campioni non contenevano pesticidi thiabendazole, fenhexamid,and chlorpyrifos
- Correlazione tra attività estrogenica e residui di pesticidi, mentre nessuna correlazione è stata trovata tra fitoestrogeni naturali e attività estrogenica

T. Schiliro et al./Food and Chemical Toxicology 62 (2013) 82-90

I prodotti biologici sono protettivi?

Reduction in urinary organophosphate pesticide metabolites in adults after a week-long organic diet*

Liza Oates a,*, Marc Cohen a, Lesley Braun b,1, Adrian Schembri c, Rilka Taskova d

Renata Alleva

DAP results for individual metabolites (creatinine corrected $\mu g/g$) N=13.

201 122			Service and the service of the servi	Siga	
Conb	Org ^c	Con ^b	Org	10	
23	ND d (0,21)e	3.9 (6.7)	ND d (-)	0.028*	
12	7.4	4.8 (4.5)	2.8 (2.6)	0.221	
160	8.5	29 (48)	0.98 (2,3)	0.005*	
10	3.6	1.8 (3.4)	0.56 (0.97)	0.263	
14	3.7	2.3 (3.9)	0.35 (1.0)	0.051**	
0.33	NQf (0.22)e	0.12 (1.2)	0.068 (0.046)	0.144	
	23 12 160 10 14	23 ND ^d (0.21) ^e 12 7.4 160 8.5 10 3.6 14 3.7	23 ND ^d (0,21) ^e 3.9 (6.7) 12 7.4 4.8 (4.5) 160 8.5 29 (48) 10 3.6 1.8 (3.4) 14 3.7 2.3 (3.9)	23 ND ^d (0.21) ^e 3.9 (6.7) ND ^d (-) 12 7.4 4.8 (4.5) 2.8 (2.6) 160 8.5 29 (48) 0.98 (2.3) 10 3.6 1.8 (3.4) 0.56 (0.97) 14 3.7 2.3 (3.9) 0.35 (1.0)	

a School of Health Sciences, Wellness Group, RMIT University; PO Box 71, Bundoora, Victoria 3083, Australia

b Centre of Ethics in Medicine and Society, Department of Medicine, Monash University; Pharmacy Department, The Alfred Hospital, Melbourne, Australia

c CogState Limited, Melbourne, Australia

d AsureOuality Laboratories, Wellington, New Zealand

Research | Children's Health

Urinary Biomarkers of Prenatal Atrazine Exposure and Adverse Birth Outcomes in the PELAGIE Birth Cohort

Cécile Chevrier,^{1,2} Gwendolina Limon,³ Christine Monfort,^{1,2} Florence Rouget,^{1,2,4} Ronan Garlantézec,^{1,2,5} Claire Petit,^{1,2} Gaël Durand,³ and Sylvaine Cordier^{1,2}

¹INSERM, U625, Rennes, France; ²University of Rennes I, IFR140, Rennes, France; ³Idhesa, Plouz nce; ⁴"Bien naître en Ille-et-Vilaine" Perinatal Network, Rennes, France; ⁵Public Health Department, Hospital University, Brest, France

BACKGROUND: Despite evidence of atrazine toxicity in developing organisms from experimental studies, few studies—and fewer epidemiologic investigations—have examined the potential exposure.

OBJECTIVES: We assessed the association between adverse birth outcomes and urinary bi a kers of prenatal atrazine exposure, while taking into account exposures to other herbicides used on corn crops (simazine, alachlor, metolachlor, and acetochlor).

METHODS: This study used a case-cohort design nested in a prospective birth cohort con a till in the Brittany region of France from 2002 through 2006. We collected maternal urine samples to examine pesticide exposure biomarkers before the 19th week of gestation.

RESULTS: We found quantifiable levels of atrazine or atrazine mercapturate in urine samples of 5.5% of 579 pregnant women, and dealkylated and identified hydroxylated triazine metal rates in 20% and 40% of samples, respectively. The presence versus absence of quantifiable levels of a specific atrazine metabolite was associated with fetal growth restriction [odds ratio (Oscillator); 95% confidence interval (CI), 1.0–2.2] and small head circumference for sex and gestation age (OR = 1.7; 95% CI, 1.0–2.7). Associations with major congenital anomalies were not evident with atrazine or its specific metabolites. Head circumference was inversely associated with the presence of quantifiable urinary metolachlor.

CONCLUSIONS: This study is the first to assess associations of birth outcomes with multiplary biomarkers of exposure to triazine and chloroacetanilide herbicides. Evidence of associations with adverse birth outcomes raises particular concerns for countries where atrazine is still in use.

KEY WORDS: atrazine, environmental exposure, fetal growth, herbicides. *Environ Health Perspect* 119:1034–1041 (2011). doi:10.1289/ehp.1002775 [Online 2 March 2011]

Association Between Organic Dietary Choice During Pregnancy and Hypospadias in Offspring: A Study of Mothers of 306 Boys Operated on for Hypospadias

Jeppe Schultz Christensen, Camilla Asklund, Niels E. Skakkebæk, Niels Jørgensen, Helle Raun Andersen, Troels Munch Jørgensen, Lars Henning Olsen, Anette Pernille Høyer, Jan Moesgaard, Jørgen Thorup and Tina Kold Jensen

Associazione tra consumo di latticini soprattutto di origine non biologica nella dieta della gestante e ipospadia del pembino

Tal associazione sembra legata alle contaminazioni di pesticidi del formaggio

Table 3. Combined choice of organic alternative to nonmilk dairy products during pregnancy and current maternal consumption of butter and cheese

Choice of Organic Alternative to Nonmilk Dairy Products During First Trimester	Current Daily Consumption of Butter + Cheese	No. Cases (%)	No. Controls (%)	Unadjusted OR (95% CI)	Adjusted OR (95% CI)
Often/Sometimes	Both less than 1	20 (6.6)	37 (12.1)	Reference	Reference
	Butter or cheese 1 or more	39 (12.9)	40 (13.1)	1.80 (0.90-3.63)	1.84 (0.90-3.77)
	Both 1 or more	29 (9.6)	38 (12.4)	1.41 (0.68-2.92)	1.35 (0.64-2.84)
Rarely/Never	Both less than 1	52 (17.2)	53 (17.3)	1.82 (0.93-3.53)	1.68 (0.85-3.34)
	Butter or cheese 1 or more	110 (36.4)	97 (31.7)	2.10 (1.14-3.86)	1.87 (1.01-3.48)
	Both 1 or more	52 (17.2)	41 (13.4)	2.35 (1.19-4.64)	2.18 (1.09-4.36)
		Alleva R.			

Alimenti biologici e Ipospadia

Seventy-four male newborns were diagnosed with hypospadias (0.2%) and 151 with cryptorchidism (0.4%). Women who consumed any organic food during pregnancy were less likely to give birth to a boy with hypospadias (OR=0.42; 95% CI: 0.25, 0.70 based on 21 exposed cases) than women who reported they never or seldom consumed organic food. Associations with specific organic foods were strongest for vegetable (OR=0.36; 95% CI: 0.15, 0.85; 10 exposed cases) and milk/dairy (OR=0.43; 95% CI: 0.17, 1.07; 7 exposed cases) consumption.

Associazione tra consumo di una dieta basata su prodotti biologici e rischio di pre-eclampsia in 28192 gestanti (FFQ)

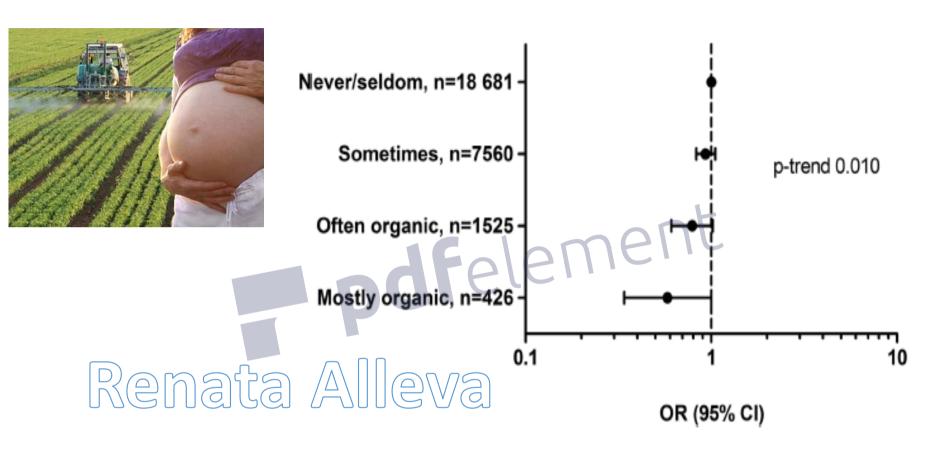


Figure 2 Associations (ORs and 95% CIs) between reported consumption of organic vegetables and pre-eclampsia among 28 192 pregnant women in the Norwegian Mother and Child Cohort Study 2002–2008.

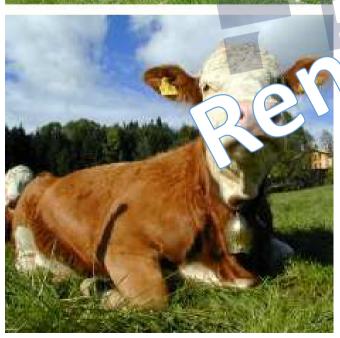
RESEARCH ARTICLE OPEN ACCESS OPEN PEER REVIEW

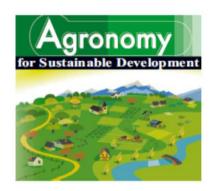
Food patterns and dietary quality associated with organic food consumption during pregnancy; data from a large cohort of pregnant women in Norway

Hanne Torjusen . Geir Lieblein, Tormod Næs, Margaretha Haugen, Helle Margrete Meltzer and Anne Lise Brantsæter

BMC Public Health 2012 12:612 https://doi.org/10.1186/1471-2458-12-612 © Torjusen et al.; licensee BioMed Central Ltd. 2012 Received: 10 June 2011 | Accepted: 28 July 2012 | Published: 6 August 2012 Open Peer Review reports

Creazione di una connessione protetta in corso...


The present study showed that pregnant Norwegian women reporting frequent consumption of organically produced food had a dietary pattern and quality more in line with public advice for healthy and sustainable diets. A methodological implication is that the overall diet needs to be included in future studies of potential health outcomes related to consumption of organic food during pregnancy.

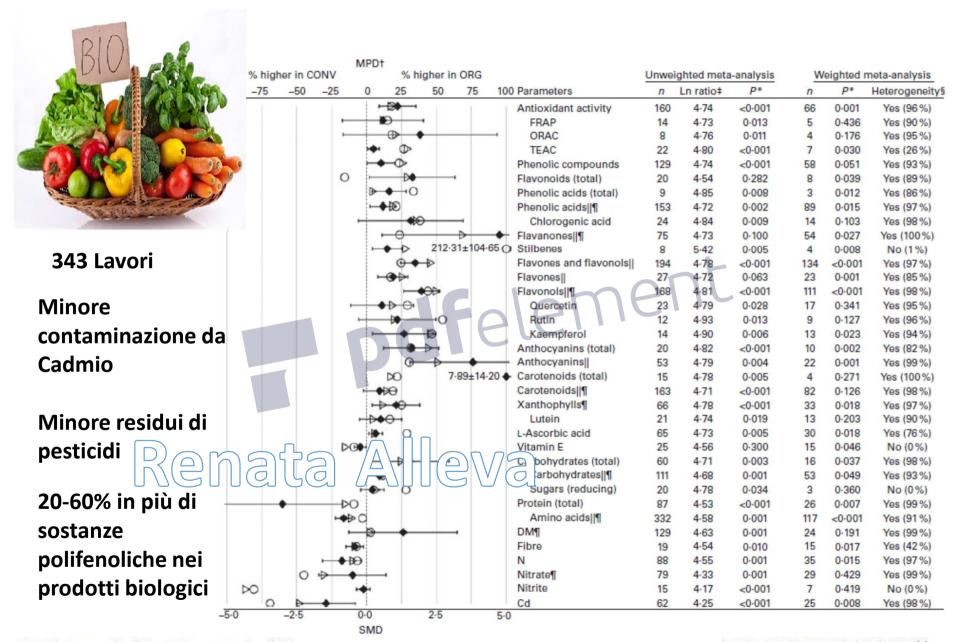

Prodotti Biologici: e dal punto di vista nutrizionale?

Alleva R.

Agron. Sustain. Dev. 30 (2010) 33-41 © INRA, EDP Sciences, 2010

DOI: 10.1051/agro/2009019

Available online at: www.agronomy-journal.org



Review article

Nutritional quality and safety of organic food. A review

Denis LAIRON*

Increased contents	Reduced contents	Comparable contents			
Dry matter in vegetables	Pesticide residues in all food (mostly absent)	Mycotoxins in cereals & mill			
Some minerals (iron, magnesium) in vegetables	Nitrates in vegetables	Most minerals in fruit, vegetables & cereals			
Anti-oxidants in crops: Vitamin C (potatoes) Polyphenols in fruit & vegetables, Salicylic acid in vegetables		Beta-carotene in fruit & veg- etables			
Polyunsaturated fatty acids in meat and milk	Saturated fatty acids in meat				
Most nutrients in wholegrain organic cereals and derivatives	Protein content in grains				

British Journal of Nutrition, page 1 of 18

doi:10.1017/S0007114514001366

© The Authors 2014. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/

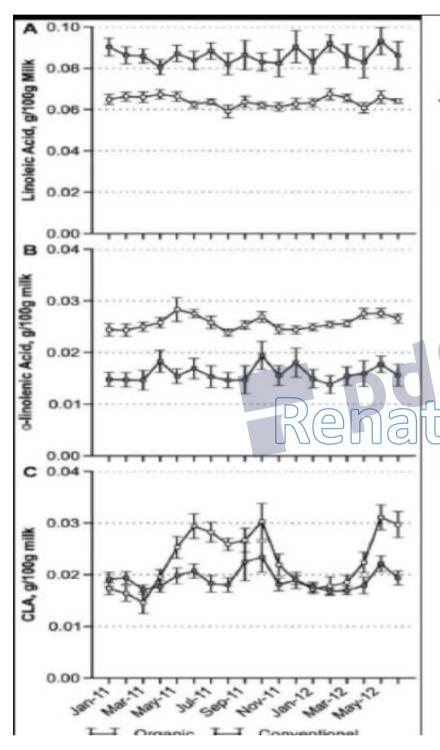
Acidi grassi (%)	Convenzionale	Biologico
somma omega 6	21,8	17,3
somma omega 3	2,4	3,6
omega 6 / omega 3	9,1	4,8

La produzione di carne di pollo in Italia è stata pari a 1.296.400 tonnellate, con un consumo pro capito di 19,85 kg.

1 99% del pollo mangiato in Italia proviene da allevamenti intensivi e *oltre il 95% dei polli italiani è allevato in sistemi intensivi.*

Negli allevamenti intensivi, i polli crescono fino a 90 grammi al giorno, raggiungendo il peso di macellazione in appena 39-42 giorni (in altri sistemi di allevamento i polli vivono oltre gli 80 giorni)

© The Authors 2016. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.


Composition differences between organic and conventional meat: a systematic literature review and meta-analysis

Renata Alleva

Table 2. Estimated fatty acids (mg/person per d) intake from organic (ORG) and conventional (CONV) meat based on FAO's fat supply quantity data⁽⁴²⁾ for bovine meat, pig meat, sheep and goat meat and poultry meat in the European Union, calculated using the data included in the unweighted meta-analysis shown in Fig. 2

						IF	Consum	ption associa	ted with		111				
		Beef		Lam	b and goat m	neat†		Pork‡		(Chicken mea	t§		Total meat	
Parameters	ORG	CONV	MPD	ORG	CONV	MPD	ORG	CONV	MPD	ORG	CONV	MPD	ORG	CONV	MPD
SFA	1518	1507	1	527	528	0	6648	6868	-3	1408	1419	-1	10 100	10 322	-2
14:0 (myristic acid)	59	66	-12	60	61	-2	217	252	-16	27	41	-50	363	420	-16
16:0 (palmitic acid)	709	715	-1	252	254	-1	4238	4368	-3	993	999	-1	6191	6337	-2
MUFA	1307	1395	-7	406	414	-2	8229	8417	-2	1587	1858	-17	11 528	12 083	-5
PUFA	525	455	15	142	132	8	2930	2561	14	1482	1200	24	5080	4348	17
n-3 PUFA	128	78	64	41	40	2	419	360	16	161	136	19	748	613	22
n-6 PUFA	290	277	5	94	95	-1	4400	3637	21	1396	1100	27	6180	5110	21

MPD mean perpentage difference

Milk nutritional quality

Benbrook 2013 PLoS One e82429

Tsiplakou E2010 J Dairy Res. 77:343-.
Differences in sheep and goats milk fatty acid profile between conventional and organic farming

organic sheep and goats milk had lower fat content and higher content in MUFA, PUFA, alpha-LNA, CLA, n-3

Ellis KA 2006 J Dairy Sci. 89:1938-50.

Comparing the fatty acid
composition of organic and
conventional milk.

Organic milk had a higher proportion of PUFA and of n-3 FA and lower n-6:n-3 FA ratio than conventional milk.

Rimuovere filigrana ora

Fragole biologiche vs fragole convenzionali

- Capacità antiossidante totale più alta (8.5%)
- Maggiore concentrazione di Vitamina C (9.7%)
- Maggiori concentrazioni fenoli totali (10.5%)
- Meno fosforo (13.6%) e potassio (9.1%)
- Specifici polifenoli (quercitina e acido ellagico) mostrano tendenze miste

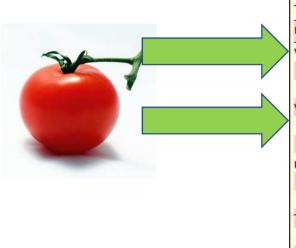
Conclusions/Significance: Our findings show that the organic strawberry farms produced higher quality fruit and that their higher quality soils may have greater microbial functional capability and resilience to stress. These findings justify additional investigations aimed at detecting and quantifying such effects and their interactions.

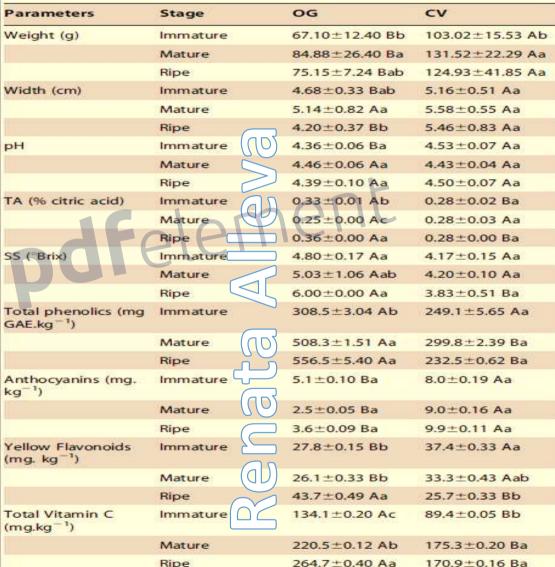
The Impact of Organic Farming on Quality of Tomatoes Is Associated to Increased Oxidative Stress during Fruit Development

Aurelice B. Oliveira¹, Carlos F. H. Moura², Enéas Gomes-Filho¹, Claudia A. Marco³, Laurent Urban⁴, Maria Raquel A. Miranda¹*

1 Universidade Federal do Ceará, Depto. Bioquímica e Biologia Molecular, Fortaleza-CE, Brazil, 2 Embrapa Agroindustria Tropical, Fortaleza-CE, Brazil, 3 Universidade Federal do Ceará, Campus do Cariri, Av. Tenente Raimundo Rocha s/n - Cidade Universitária, Juazeiro do Norte-CE, Brazil, 4 Université d'Avignon et des Pays de Vaucluse, Campus Agroparc, Avignon, France

Lo stress ossidativo giova al pomodoro BIO. Questo accade probabilmente perché, non avendo il supporto di pesticidi ed erbicidi, la pianta deve mettere **in** campo i propri meccanismi di difesa, e questo stress. Non si tratta però di meno negativo perché si traduce in un accumulo antiossidanti e di materia solida solubile, caratteristiche ottime punto di vista nutrizionale.


Alleva R.


Parametri qualitativi tra pomodori di agricoltura

convenzionale e agricoltura biologica

Relative chloroph eva R.

content

40.18±7.20 A

40.29 ± 5.20 A

February 2013 | Volume 8 | Issue 2 | e56354

Polifenoli

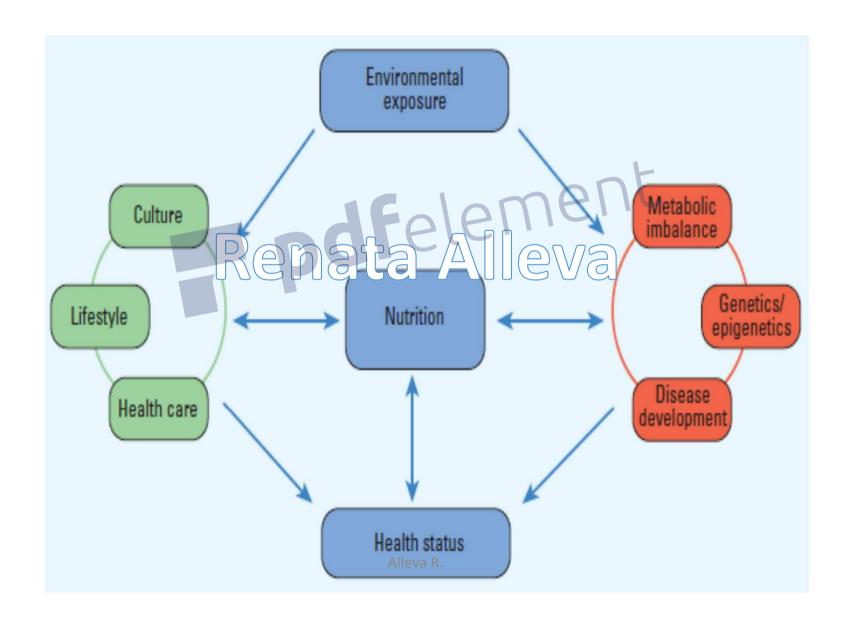
CH.

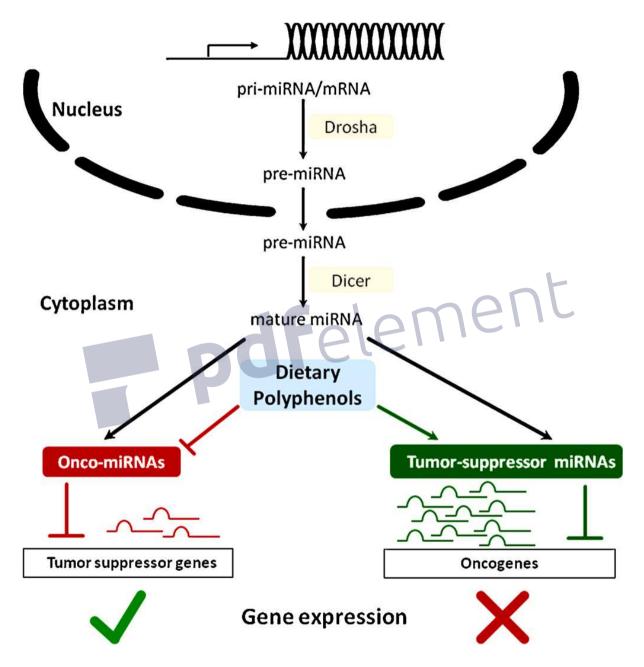
The Journal of Nutrition

Nutritional Epidemiology

Renata Alleva

High Concentrations of a Urinary Biomarker of Polyphenol Intake Are Associated with Decreased Mortality in Older Adults^{1,2}


Ane


Raul Zamora-Ros,^{3,4} Montserrat Rabassa,³ Antonio Cherubini,^{5,6}* Mireia Urpí-Sardà,³ Stefania Bandinelli,⁷ Luigi Ferrucci,⁸ and Cristina Andres-Lacueva³

Le piante producono numerosi composti fenolici, di cui necessitano per la loro pigmentazione – impollinazione e difesa dai predatori e patogeni

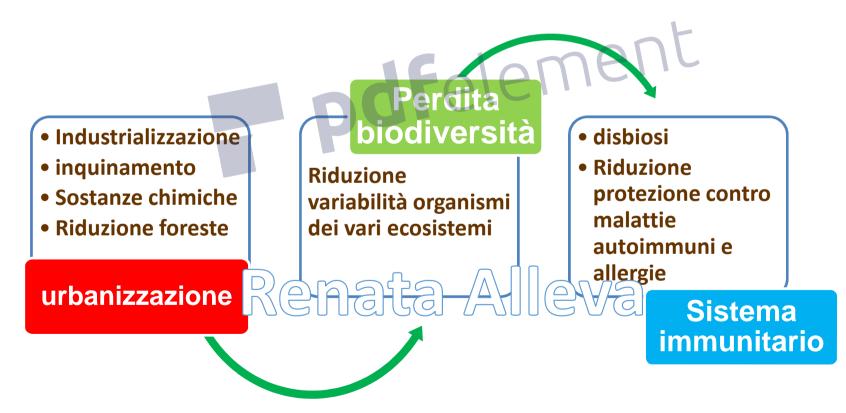
Cinnamaldeide

Cuminaldeide

Alleva R.

doi:10.1038/nature11148

Biodiversity loss and its impact on humanity


Bradley J. Cardinale¹, J. Emmett Duffy², Andrew Gonzalez³, David U. Hooper⁴, Charles Perrings⁵, Patrick Venail⁸, Anita Narwani⁸, Georgina M. Mace⁶, David Tilman⁷, David A. Wardle⁵, Ann P. Kinzig⁵, Gretchen C. Daily⁹, Michel Loreau¹⁰, James B. Grace¹¹, Anne Larigauderie¹², Diane S. Srivastava¹³ & Shahid Naeem¹⁴

"The biodiversity hypotesis"

L'ipotesi sulla biodiversità e le malattie allergiche: posizione dell'organizzazione mondiale sulle allergie

(Haahtela et al., 2013)

Alleva R.

Rimuovere filigrana ora

Biodiversità ambientale, microbiota umano ed allergie sono correlate

118 adolescenti finlandesi, atopici e sani, diverse zone (città, campagna)

Parametri analizzati: biodiversità zona, sistema immunitario (IL-10), flora batterica cutanea

Minor biodiversità

Diversità proteobatteri cute significativamente minore

Renata Alleva R.

Alleva R.

(Hansky et al., 2013)

REVIEW ARTICLE

NATURE PLANTS DOI: 10.1038/NPLANTS.2015.221

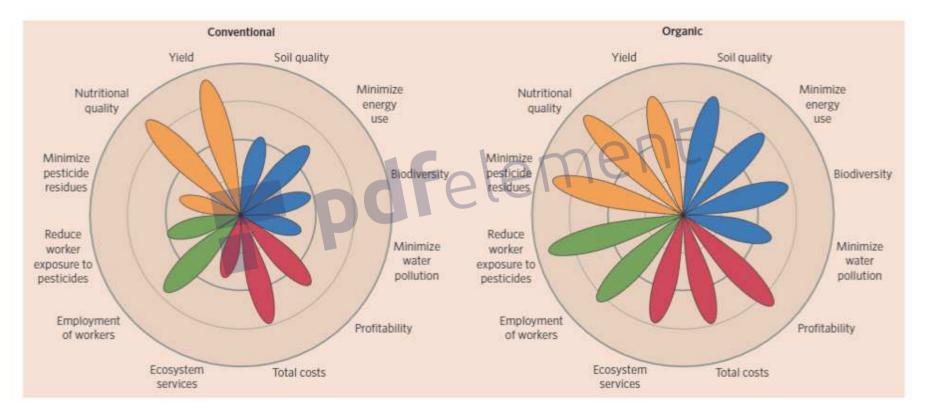


Figure 4 | Assessment of organic farming relative to conventional farming in the four major areas of sustainability. Lengths of the 12 flower petals are qualitatively based on the studies discussed in this Review^{15-23,25-29,32-56,58,62-34} and indicate the level of performance of specific sustainability metrics relative to the four circles representing 25, 50, 75 and 100%. Orange petals represent areas of production; blue petals represent areas of environmental sustainability; red petals represent areas of economic sustainability; green petals represent areas of wellbeing. The lengths of the petals illustrate that organic farming systems better balance the four areas of sustainability.

IN ITALIA

L'impronta idrica degli sprechi alimentari equivale a circa 2.500 miliardi di litri ogni anno nel mondo.

Lo spreco di acqua lungo tutta la filiera alimentare a causa del cibo inutilizzato dalle persone di cui 43% milioni di m3 carne milioni di m³ ¥ 19% lattierofrutta e verdura cereali e derivati caseari fabbisogno annuo di acqua potabile di

Resa, media dell'agricoltura biologica è equivalente a quella industriale e il 30% maggiore negli anni di siccità grazie alla resistenza e adattabilità Inoltre nelle aziende biologiche si ha una maggiore biodiversità dal 30 al 50% in più (Report 2016)

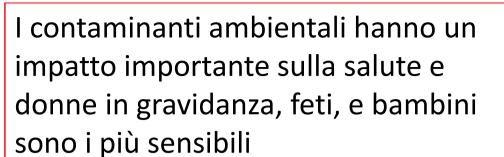
HOW TO LEAVE INDUSTRIAL AGRICULTURE BEHIND: FOOD SYSTEMS EXPERTS URGE GLOBAL SHIFT TOWARDS AGROECOLOGY

Alleva R.

Rimuovere filigrana ora

E ora le reazioni.....trova quella giusta

IL PESSIMISTA ...


Non si può mangiare più niente Preferisco non sapere, Vivo meglio

Sapevo del problema ambientale e ho cercato di capire cosa posso fare io

E' necessario ridurre l'esposizione ai contaminati attraverso la catena alimentare

Una strategia di prevenzione deve sostenere produzioni a basso impatto ambientale e assicurare alimenti che siano privi di residui

Attualmente i prodotti biologici risultano dal punto di vista dei contaminati più sicuri per la salute non solo per i residui negli alimenti ma per l'impatto sull'ambiente

Nutrirsi per nutrire

Dieta materna

Epigenetica

Sviluppo del feto

Salute del bambino e nel futuro di adulto

Signora mi raccomando, durante la gravidanza stia lontana dai gatti!

Alleva R.